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Abstract

This thesis deals with the subject of the error-disturbance trade-off relation in quan-

tum measurements using a new quantum information approach based on the resource

theory of asymmetry. The goal is to fully understand and quantify the fundamental

restrictions imposed on the information about a quantum state available through mea-

surements. The connection between the symmetric component of a quantum stat, with

respect to the U(1) symmetry generated by a given observable, and the measurement pro-

cess of this observable is presented and the asymmetry resource of a state is linked with

the state-dependent error-disturbance uncertainty relation. The requirements for physi-

cally meaningful definitions of a state-dependent measurement error and disturbance are

proposed and a detailed discussion of the current approaches to the subject of sequential

measurements is given. It is pointed out that these approaches fail to correctly describe

the trade-off between the information gained through the measurement of one observable

and the disturbance of the measurement of the other. Then the limitation on quantum

measurements induced by conservation laws, the famous Wigner-Araki-Yanase (WAY)

theorem, is analyzed, both from a historical and contemporary research perspective. An

asymmetry resource formulation of this problem is also presented, where the restriction

of symmetric evolution limits the insight into the asymmetric part of the quantum state.

Next, the current bounds for both the error-disturbance relation and the noise in the

WAY scenario measurement are improved with the help of the generalized Heisenberg un-

certainty relations for mixed states. Finally these generalized relations together with the

entropic uncertainty relations are used to bound the asymmetric properties of a quantum

state with respect to two non-commuting observables.
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Introduction

Despite almost a century of research on quantum theory, one of its fundamental building

blocks, the quantum measurement process, is still not well understood. One of the well-

known results in this field is the famous Heisenberg uncertainty relation. Its best known

modern formulation (also known as the Heisenberg-Robertson uncertainty relation [1])

concerns the outcome statistics of two independent measurements of non-commuting ob-

servables performed on an ensemble of identically prepared quantum states. It states

that the product of variances of these two outcome statistics is lower-bounded by the

mean value of the commutator of measured observables in the given quantum state. Al-

though this formulation says nothing about the effect of one measurement on the outcome

statistics of the other, it is usually misinterpreted in the spirit of the original Heisenberg

microscope thought experiment, i.e. that the bigger the precision of the measurement

of one observable, the bigger the disturbance of the measurement of the other one (not

commuting with the first one). Indeed, the formulation of uncertainty relation in terms

of precision and disturbance of sequential measurements was the original Heisenberg’s

concept and is called the noise-disturbance uncertainty relation. Interestingly it was not

until recently that the problem of sequential measurements was addressed with mathe-

matically rigorous approach [2]. However, the problem is not yet fully understood, mainly

due to the discussion over the proper definitions of noise and disturbance for quantum

measurements.

Another interesting, however not so widely known, result limiting the measurement

precision is the Wigner-Araki-Yanase (WAY) theorem [3, 4]. It states that there exists no

exact measurement of a quantum operator that does not commute with a conserved quan-

tity operator. Since it is well known that the presence of a conservation law results from

the underlying continous symmetry of the system evolution (via the Noether’s theorem

[5]), one can restate the WAY theorem: measurement of an operator which is not invariant

under the symmetry operation of the system evolution cannot be exact. Although exact

measurements are not allowed, the approximate measurement processes exist. Recently,

Ozawa found the lower bound for the error of such measurements [6] by using a variant

of his generalized noise-disturbance relation [2]. The origin of the bound, however, and
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Introduction

especially its dependence on the uncertainty (variance) of the conserved quantity in the

initial states of the measured system and measuring apparatus is still not well understood.

Both the noise-disturbance uncertainty relation (NDUR) and the WAY theorem may

be seen as restrictions on the information about the quantum state available to the ob-

server. The NDUR states that obtaining the information on the quantum state distribu-

tion over eigenstates of one observable (by measuring it) disturbs the distribution over the

eigenstates of the other observable, so that the full information abut the initial quantum

state cannot be recovered. The WAY theorem on the other hand limits the insight into

the asymmetric (with respect to U(1) symmetry generated by the conserved quantity)

part of the quantum state.

The aim of this project is to create a new, information-theoretic description of the

quantum measurement process that would allow to fully understand and quantify the

fundamental restrictions imposed on the information about the quantum state available

through measurements. The resource theory of asymmetry [7, 8] is a well-suited tool

for this task. As will be shown the measurement of a quantum observable A is equiv-

alent to the projection onto the symmetric subspace generated by A (the so-called G-

twirling). Therefore the investigation of relations between symmetric subspaces for two

non-commuting observables can shed light on the noise-disturbance relation for sequential

measurements. Also, in the case of the WAY scenario measurements, due to the formu-

lation in terms of symmetric evolution, the resource theory of asymmetry seems to be a

natural language to work with.

The thesis consists of four chapters. In the first one, the basic concepts and ideas

concerning the resource theory of asymmetry are presented, as well as its connection to

the measurement process. Next, in Chapter 2, the problem of sequential measurements

is discussed. The arguments for using the definitions of noise and disturbance based

solely on the outcome statistics of measurements are first presented and then the current

approaches [2, 9] to quantify and bound error and disturbance are analyzed and compared

with the proposed ones. Chapter 3 addresses the problem of quantum measurements in

the presence of a conservation law (the WAY scenario measurements). The historical

overview of this subject is given together with the recent approach of Ozawa [6] and the

formulation of the problem in terms of the asymmetry resources [10, 11]. Finally, Chapter

4 contains applications of different results from the general field of uncertainty relations

to problems presented in the first three chapters.
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Chapter 1

Asymmetry resources

All resource theories are formulated in terms of free states and free transformations. Free

transformations are assumed to be the only allowed transformations of the theory and

they map the set of free states into itself. Therefore every resource theory can be for-

mulated by the restriction for the allowed transformations and the resulting set of free

states. For example, in the resource formulation of entanglement theory free transfor-

mations are restricted to the local operations and classical communication (LOCC) and

the set of free states is composed of separable (unentangled) states. Every state that is

not free is considered to be a resource. The resource theory studies the manipulation of

resource states under the free transformations. This includes e.g. the possibility of inter-

conversion between states, partial ordering based on some measure of resource or studying

the advantages of possesing a resource state in quantum communication or information

processing.

In the resource theory of asymmetry [8] (also known as the theory of quantum reference

frames) asymmetric states are treated as resources under the limitation of the symmetric

evolution, i.e. being restricted to symmetric evolution one cannot create asymmetric state,

but having one allows for otherwise forbidden operations (as asymmetric states, unlike

the symmetric ones, are affected by symmetric evolution). In this chapter we will first

present the basic definitions and theorems of the general theory and then focus on some

specific results concerning the U(1) asymmetry resource theory. We will also connect the

formalism of the U(1) asymmetry with the quantum measurement process, specifically

with the information gain-disturbance trade-off relation.

1.1 Basic definitions and theorems

The set of free transformations is defined by transformations that are symmetric with

respect to some symmetry group G. Formally it means that the set is restricted to

3



1.1. Basic definitions and theorems

quantum operations E that are covariant under the unitary representation of the group,

{U(g),∀g ∈ G}, i.e.

∀g ∈ G : E [U(g)(·)U †(g)] = U(g)E(·)U †(g), (1.1)

which can be equivalently written in terms of vanishing commutators,

∀g ∈ G : [E ,U(g)] = 0, (1.2)

where U(g)(·) = U(g)(·)U †(g). Similarly, the set of free states is composed of states ρ that

are invariant under the unitary representation of the group G, i.e. that are symmetric

with respect to symmetry group G,

∀g ∈ G : U(g)ρU †(g) = ρ, (1.3)

or equivalently

∀g ∈ G : [ρ, U(g)] = 0. (1.4)

As an example consider the set of unitaries exp (iφLz), which are the unitary represen-

tation of the U(1) group. Since these operators are representing the rotation around the

z axis in the position space, the corresponding invariant states must be invariant with

respect to these rotations. The set of free states is thus composed of the states diagonal

in the basis of the eigenstates of the Lz operator, in particular the subset of pure free

states is composed of eigenstates of the Lz operator.

In order to specify the asymmetric properties of a state ρ one can find all its symme-

tries, the symmetry subgroup of ρ, which is simply defined as the subgroup of G under

which ρ is invariant,

SymG(ρ) = {g ∈ G : U(g)ρU †(g) = ρ}. (1.5)

One can clearly see from the above definition and Eq. 1.3 that the symmetry subgroup of

a free state is the whole group G. One of the important results concerning the symmetry

subgroup of states is that under G-covariant transformation E all the symmetries of the

initial state are preserved [8], i.e.

SymG(ρ) ⊆ SymG[E(ρ)]. (1.6)

As a result being restricted to G-covariant operations one cannot create asymmetric states

from symmetric ones or transform one kind of asymmetric state into the other (for example

invariant only under rotations around x into invariant only under rotations around z).

States that can be reversibly interconverted under the G-covariant operation form the

so called G-equivalence class. More formally two states, ρ and σ, belong to the same

G-equivalence class, if there exist G-covariant quantum operations E and F such that

E(ρ) = σ, (1.7a)

F(σ) = ρ. (1.7b)
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1.2. U(1) asymmetry resource theory

States belonging to the same G-equivalence class must have all the same symmetries.

The G-twirling operation is defined as the averaging over the group,

G(ρ) =

∫
dgU(g)ρU †(g), (1.8a)

G(E(·)) =

∫
dgU(g)E(·)U †(g). (1.8b)

It can be easily verified that G-twirled state (operation) is a symmetric state (operation).

In fact the G-twirling is the projection onto the symmetric subspace of states (operations).

As such it leaves symmetric states (operations) invariant, i.e. if ρ (E) is symmetric then

G(σ) = σ (G(E) = E). With the use of G-twirling one can express the natural measure of

asymmetry, called the relative entropy of frameness, in a particularly simple form. The

relative entropy of frameness is defined as the relative entropy distance of a state ρ to the

nearest symmetric state,

AsG(ρ) = min
σ: G(σ)=σ

{S(ρ||σ)}. (1.9)

One can show [12] that the nearest symmetric state to ρ is just its projection onto the

symmetric subspace, so that

AsG(ρ) = S(ρ||G(ρ)) = S(G(ρ))− S(ρ). (1.10)

In particular case of pure states it simplifies to

AsG(|ψ〉 〈ψ|) = S(G(|ψ〉 〈ψ|)). (1.11)

1.2 U(1) asymmetry resource theory

As will be explained in the next section, the case of G = U(1) is of particular interest for

the quantum measurements related considerations, therefore some results concerning it

will be presented now. The unitary representation of this group is generated by operator

N =
∑

n n |n〉 〈n|, so that U(θ) = exp (iθN) and the Hilbert space splits up into charge

sectors of N , H = ⊕nHn. The general form of U(1)-invariant unitary is diagonal in the

{|n〉} basis,

VU(1) =
∑
n

eiφn |n〉 〈n| , (1.12)

therefore the only action allowed by symmetric unitary is the change of relative phases

between the eigenstates of N . The more general U(1)-covariant operations have the
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1.2. U(1) asymmetry resource theory

following Kraus decomposition [13]

EU(1)(·) =
∑
k,α

K†k,α(·)Kk,α, (1.13a)

Kk,α = SkK̃k,α, (1.13b)

K̃k,α =
∑
n

c(k,α)n |n〉 〈n| , (1.13c)

Sk =
∑

n=max{0,−k}

|n+ k〉 〈n| , (1.13d)

and allow not only to change the relative phases (the action of K̃k,α), but also to shift the

number of excitations (the action of Sk shifts it upwards for k > 0 and downwards for

k < 0).

Basing on the above result one can find the condition for the pure state |ψ1〉 to be

convertible into |ψ2〉 under symmetric evolution [13]. First note that under symmetric

evolution any two states can be brought to the standard form

|ψ1〉 =
∑
n

√
pn |n〉 , (1.14a)

|ψ2〉 =
∑
n

√
qn |n〉 . (1.14b)

Now the condition for convertibility in terms of the distributions p = (p1, p2, . . . ) and

q = (q1, q2, . . . ) can be written as

p =
∑
k

wkT
(k)q, (1.15)

where 0 ≤ wk ≤ 1,
∑

k wk = 1 and [T (k)q]j = qj+k.

It is interesting to note that if one limits only to the U(1)-covariant transformations

between pure states, then the variance V of N in a given state is an asymmetry monotone.

In order to see this, let us first use the concavity of variance (proven in Sec. 4.3.1),

V (p) = V
(∑

wkT
(k)q
)
≥
∑
k

wkV
(
T (k)q

)
. (1.16)

Now one can show that V (q) = V (T (k)q) in the following way

V (T (k)q) =
∑
n

qn(n+ k)2 −
∑
n,m

qnqm(n+ k)(m+ k) =
∑
n

qn(n2 + 2nk + k2)

−
∑
n,m

qnqm(nm+ nk +mk + k2) =
∑
n

qnn
2 −

∑
n,m

qnqmnm = V (q).

Substituting this result to Eq. 1.16 one gets

V (p) ≥
∑
k

wkV (q) = V (q), (1.17)
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1.3. Connection between projective measurements and U(1) asymmetry resources

which means that the variance is monotonically decreasing under U(1)-covariant trans-

formations between pure states. In Chapter 4 it will be shown that the extension of

variance as a measure of asymmetry for mixed states is given by the Wigner-Yanase skew

information.

The operational meaning of variance V as a measure of asymmetry resource was given

by Gour [13]. Defining the maximally asymmetric qubit state |φ〉 = (|0〉+|1〉)/
√

2 one can

introduce the measure based on the asymptotic conversion rate into |φ〉. Having M →∞
copies of a given pure state |ψ〉 one can convert them using U(1)-covariant transformations

into 4MV copies of |φ〉. Therefore the scaled variance of a state is equal to the asymptotic

conversion rate of this state into the maximally asymmetric qubit state.

1.3 Connection between projective measurements and

U(1) asymmetry resources

The non-selective projective measurement of observable A =
∑
an |an〉 〈an| on a quantum

state ρ is defined as a measurement of A for which the outcome is not recorded. Alter-

natively one can use the following operational scenario for such measurement: one party,

Alice, posesses the quantum state ρ, sends it to another party, Bob, which performs the

measurement of A (known to Alice) and sends the state back to her, without informing

about the measurement outcome. One can also see the non-selective measurement as the

average effect of the measurement on a state: starting from the ensemble of identically

prepared states, ρ⊗N , one performs the measurement of A on every copy of ρ, then mixes

all the systems together and chooses one at random. Of course all these processes have

the same effect and transform the initial state ρ into

ρ′ =
∑
n

|an〉 〈an| ρ |an〉 〈an| =
∑
n

ρnn |an〉 〈an| , (1.18)

thus killing all off-diagonal terms of ρ in the {|an〉} basis. As the measurement outcomes

cannot be controlled (due to the probabilistic nature of quantum mechanics), when one

wants to describe the effect of the projective measurement of A (on the measured state,

on the subsequent measurements or on anything else), it is reasonable to use its average

effect. For example, if one is looking for the disturbance that the measurement of A

induced on the subsequent measurement of B, one should compare the measurements of

B on states ρ and ρ′.

Let us now look at the G-twirling operation for U(1) group generated by observable

A,

GA(·) =
1

2π

∫ 2π

0

dφe−iφA(·)eiφA, (1.19)
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1.3. Connection between projective measurements and U(1) asymmetry resources

and the effect it has on the arbitrary state ρ,

GA(ρ) =
1

2π

∫ 2π

0

dφe−iφA

(∑
m,n

|am〉 〈am|ρ|an〉 〈an|

)
eiφA

=
∑
m,n

〈am|ρ|an〉 |am〉 〈an|
1

2π

∫ 2π

0

dφeiφ(n−m) =
∑
n

〈an|ρ|an〉 |an〉 〈an| .

By comparing the above result with Eq. 1.18 one can see that the effect of G-twirling is

exactly the same as the effect of the non-selective measurement. Hence the measurement

of A can be seen as the projection onto the subspace of symmetric states. This means that

if one’s insight into the quantum state ρ is restricted only to the measurement outcomes

of some observable A then if the state ρ is not symmetric (with respect to symmetry

generated by A), one does not have access to the full information about the system. To

see this more clearly let us note that the full information about a state ρ living in a

d-dimensional Hilbert space requires the specification of (d2−1) real parameters, whereas

the symmetric component is fully specified by the outcome probability distribution, so by

(d− 1) real parameters. This is exactly the complementarity principle: measurement of a

given observable A of a system in the state ρ gives the observer only the insight into one

of the classical contexts of ρ, the one connected with definite values of A.

If one wants to get the full information on an unkown state ρ, a state tomography

must be performed, i.e. one has to perform measurements of different non-commuting

observables to obtain (d2 − 1) real parameters. However in order to do this one needs

an access to the ensemble of states, ρ⊗N , as the measurement of A is not only limited

to the symmetric part of information about ρ, but it also affects the state by projecting

it onto the symmetric subspace, thus changing to GA(ρ). Therefore having a single copy

of ρ and taking into account the no-cloning theorem [14], one cannot in general obtain

all the information about ρ. One can formulate this problem in terms of the so-called

error-disturbance relations, which quantitaively describe how the acquisition of informa-

tion about one classical context (e.g. by measuring observable A) disturbs the information

about the different classical context (e.g. connected with measurement outcomes of ob-

servable B). One of the ways to find such relations is to note that a given classical context

of ρ connected with definite values of A is the symmetric component of ρ, GA(ρ), and then

to study the relations between symmetric subspaces with respect to different observables.

In other words: if one wants to find how the measurement of A affects further measure-

ments of B, on has to find out how asymmetric properties with respect to U(1) symmetry

generated by B are transformed by projection onto the symmetric subspace of A. For

example, if ρ is diagonal in the basis of eigenstates of A, so that it is symmetric with

respect to A, then GA(ρ) = ρ and the state, together with all its classical contexts, is

not affected (disturbed). On the other hand if ρ is asymmetric with respect to A, then
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1.3. Connection between projective measurements and U(1) asymmetry resources

the measurement will change it, thus affecting some of the classical contexts of the state.

This shows that the error-disturbance relations should be state-dependent, as they do not

depend only on the symmetric subspaces of two observables, but on the projection of ρ

onto them.

As mentioned above, the more asymmetric the state is with respect to A, the more

information about it is missing if one is restricted only to the measurement outcomes

(classical context) of A. To see this more clearly let us consider the following example.

Let us imagine that Alice is given two copies of a pure state |ψ1〉 and one of them undergoes

an unknown symmetry operation, i.e.

|ψ1〉 → |ψ2〉 = eiφA |ψ1〉 , (1.20)

for some unkown φ. Both states, |ψ1〉 and |ψ2〉, have the same classical contexts with

respect to observable A =
∑

n n |n〉 〈n|,

∀n| 〈n|ψ1〉 |2 = | 〈n|ψ2〉 |2, (1.21)

so if the only equipment in the Alice’s lab is the device that measures A, then Alice

cannot distinguish between |ψ1〉 and |ψ2〉. The first question is how much can the two

states differ and still be indistinguishable by measurements of A, so how much information

about a state is not encoded in the outcome probability distribution of A? As a measure

of difference between two states |ψ1〉 and |ψ2〉 let us use the squared fidelity,

F 2(ψ1, ψ2) = | 〈ψ1|ψ2〉 |2. (1.22)

Now it is easy to see that there exist states |ψ1〉 such that the fidelity with the trans-

formed state is minimal and equals 0, e.g. choose |ψ1〉 = |0〉+ |1〉 and φ = π, so that

|ψ2〉 = |0〉 − |1〉. Therefore it is more interesting to ask a second question: which states

on average minimize the fidelity (differ most), where the average is taken over φ. This

corresponds to a situation when Alice has two copies of a known state |ψ1〉 and puts one

into a black box that performs a symmetry operation with some random φ. The modified

question is how much on average will the state from the black box, |ψ2〉, differ from the

original one (using the squared fidelity measure) and which state will differ most (so for

which state the part of information encoded in the outcome probability distribution of A

is the least). The average squared fidelity is given by

F 2
avg(ψ1, ψ2) =

1

2π

∫ 2π

0

dφ| 〈ψ1|ψ2〉 |2 =
1

2π

∫ 2π

0

dφ

∣∣∣∣∣∑
m,n

〈m|n〉 a∗maneiφn
∣∣∣∣∣
2

=
1

2π

∫ 2π

0

dφ

∣∣∣∣∣∑
n

|an|2eiφn
∣∣∣∣∣
2

=
1

2π

∫ 2π

0

dφ
∑
n,m

|an|2|am|2eiφ(n−m)

=
∑
n

|an|4
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1.3. Connection between projective measurements and U(1) asymmetry resources

and in order to find the state that minimizes this expression one can use the Lagrange

multpliers method. Let us define the Lagrangian,

L =
∑
n

|an|4 − λ

(∑
n

|an|2 − 1

)
=
∑
n

p2n − λ

(∑
n

pn − 1

)
, (1.23)

and minimize it,
∂L
∂pm

= 2pm − λ = 0, (1.24)

thus obtaining ∀npn = −λ/2, so together with the constraint: ∀npn = 1/N , where N is the

dimension of the Hilbert space |ψ1〉 and |ψ2〉 live in. Therefore a maximally asymmetric

state (with respect to the previously introduced measures, the relative entropy of frame-

ness and the variance) is also a state with the least information encoded in the symmetric

subspace, i.e. a state for which the least information is available from the measurements

of A.
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Chapter 2

Sequential measurements

This chapter addresses the problem of sequential measurements of two noncommuting

observables, in particular on the relation between the error (noise) ε of measuring the

first observable A and the disturbance η (induced by the first measurement) of the mea-

surement of the second observable B. In order to obtain a relation connecting these two

quantities, one has first to find the physically meaningful definitions of both ε and η for

quantum measurements of A and B. One of the possible requirements for such definitions

is to make them dependent only on the difference between the probability distributions

of a perfect measurement and the noisy or disturbed one. The physical justification and

operative meaning of such choice is given and one of the possible definitions, based on

the Kolmogorov variational distance, is proposed. Then the properties of noise and dis-

turbance fulfilling the presented requirements are found and discussed for the simplest

sequential measurement of two qubit observables (Pauli matrices along arbitrary direc-

tions). Next, the aproaches and definitions of noise and disturbance used by two groups

(Ozawa’s [2] and Busch’s [9]) are presented and applied to the same problem of sequential

measurement of qubit observables. It is then shown that in this case both approaches give

the same result, which is inconsistent with the presented requirements for the noise and

disturbance. It is pointed out that this inconsistency comes from the global, instead of

state-dependent, definition of a perfect measurement. Other flaws of both approaches, in-

dependent of the proposed definitions of noise and disturbance, are also discussed showing

that both Ozawa’s and Busch’s formulations fail to capture the error-disturbance relation

for a quantum measurement of a system in a given initial state.
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2.1 Proposal for the requirements for measurement

error and disturbance

First of all let us point out that the noise and disturbance are not only functions of the

measurements being performed (observables A and B), but also of the initial state ρ of

the measured system. For given observables A and B there exist states that are more

and less prone to error and disturbance, e.g. the measurement of σz will, in general,

disturb the subsequent measurement of σx, however if the system is initially perpared in

the eigenstate of σz no disturbance will be induced, as the state will not change after

the measurement. Therefore we want to find the definitions of noise and disturbance

dependent on the initial state of the measured system, and, as mentioned in Chapter 1,

link them with the asymmetric properties with respect to U(1) symmetries generated by

measured observables A and B. One could argue that prior to the measurement one has

no information on the state of the measured system, so that the proposed approach to

find state-dependent definitions of noise and disturbance is unjustified. However having

the state-dependent definitions allows to

• Find the worst and best case scenario, i.e. the state that maximizes or minimizes

the noise, the disturbance or the noise-disturbance product.

• Average the noise-disturbance product over all possible initial states of the system.

• Although one cannot control the initial state of the measured system, one can control

the initial state of the measuring probe, so that finding the state-dependent noise-

disturbance relation could help in finding the best initial state of the probe that will

minimize the noise-disturbance product.

Now let us focus on the meaning of the noisy and disturbed measurements. To be

physically meaningful, the noisy (disturbed) measurement should be, in principle, distin-

guishable from the perfect one. It seems that the commonly accepted [2, 9] and natural

concept of a perfect measurement of A is that the probability distribution of the measure-

ment outcomes coincides with the theoretical probability distribution of A (sometimes it

is called that such measurement satisfies the Born statistical formula). It is important to

note that it is the theoretical probability distribution and not the probability amplitude

that matters. Another condition that is often required from the perfect measurement is

the so-called repeatability condition. It states that if the second measurement is per-

formed immediately after the first one, then the two outcomes should be the same. Let

us now discuss how these requirements for perfect measurement affect the definitions of

the noise and disturbance.

12
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In general, performing a projective measurement of some observable A on a state ρ

will affect (disturb) it and change into ρ′ 6= ρ (apart from the special case, when ρ is

diagonal in the basis of eigenstates of A). The same holds true for arbitrary POVM

measurement E . However, let us emphasize that we are interested in the disturbance

of a subsequent measurement of B and not of a state. As was pointed out in Chapter

1, the projective measurement of observable B gives us only insight into the symmetric

component of the measured state, GB(ρ). Therefore the measurement will be affected

only if the symmetric component of ρ is changed by the previous measurement of A

(or POVM E). Looking for a disturbance of the measurement of B we are therefore

looking for the disturbance of one of the classical contexts of the quantum state ρ. As

the symmetric components of ρ and ρ′ (or equivalently classical contexts connected with

observable B) are fully specified by the probability distributions, pn = Tr (ρ |bn〉 〈bn|) and

p′n = Tr (ρ′ |bn〉 〈bn|), the disturbance should only depend on them. The Born statistical

formula for perfect (not disturbed) measurement is fulfilled when ∀npn = p′n, so the

disturbance should be defined as a difference (defined in a suitable way) between these

two probability distributions. The repeatability condition is fulfilled automatically, as

the considered measurement of B is projective and therefore it collapses the measured

state onto the eigenstate corresponding to the obtained outcome. We therefore conclude

that, under the assumption that disturbed measurement should be distinguishable from

the perfect one (either by failing to fulfill the Born statistical formula requirement or the

repeatability condition), the disturbance should only depend on the difference between

pn and p′n and vanish if ∀npn = p′n. The operative meaning of such definition is that

the experimenter that is measuring observable B (whose knowledge is limited only to

the measurement outcomes of B) should be able to distinguish between two ensembles of

states, ρ⊗N and ρ′⊗N , if the measurement of A (or POVM E) disturbs the measurement

of B.

Let us now consider the noise of the quantum measurement induced by perform-

ing the POVM E on a state ρ instead of the projective measurement of A. One can

use similar arguments as in the disturbance case: the measurement of A gives insight

only into symmetric part of ρ, GA(ρ), which is fully specified by the probability distri-

bution qn = Tr (ρ |an〉 〈an|). Denoting the probability distribution of the POVM E by

q′n = Tr
(
M †

nρMn

)
, where Mn are detection operators of E , the Born statistical formula

for perfect (not noisy) measurement is fulfilled when ∀nqn = q′n. The repeatability condi-

tion is in general not fulfilled, it is only if the support of ρ lies in the subspace spanned by

orthogonal projectors of E (if E is a projective measurement then the repeatability con-

dition is satisfied, since for projective measurements all projectors are orthogonal). This

leaves us with two different notions of a noisy measurement. Firstly a measurement may
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2.1. Proposal for the requirements for measurement error and disturbance

Figure 2.1: (a) Wavefunction before the POVM measurement E ; (b) Wavefunction after

the POVM measurement E .

be noisy, when it does not reproduce the statistics of the perfect measurement. Secondly

it may be noisy if it fails to be repeatable. One can however argue, that the repeatability

condition is not a neccessary requirement for the measurement to be perfect (not noisy).

If one considers the measurement of A only as a way to get insight into the symmetric part

of ρ, GA(ρ), so as a process of gaining information about ρ and not also modifying it (by

collapsing on the outcome eigenstate), then the only neccessary condition for a measure-

ment to be perfect (not noisy) is to fulfill the Born statistical formula. We propose to use

such approach, as it allows to define the noise only as a function of the difference between

qn and q′n, similarly to the definition of disturbance, thus allowing for similar treatment of

these two quantities and giving a well defined meaning of the noise-disturbance trade-off

relation.

Let us now take a closer look to better understand the consequences of the fact that

noise and disturbance depend only on the difference between actual and perfect mea-

surement outcome statistics. For disturbance this means that if POVM measurement

E disturbs the initial state of the system in such a way that it only changes the rela-

tive phases between eigenstates of B (which is equivalent to the action of U(1)-invariant

unitary, see Eq. 1.12),

ρ =
∑
m,n

ρmn |bm〉 〈bn|
POVM E−−−−−→ ρ′ =

∑
m,n

ρ′mn |bm〉 〈bn| , ρnn = ρ′nn (2.1)

then the measurement of B is not disturbed. An example of such situation is presented in

Fig. 2.1: before the POVM measurement E the wavefunction in position representation
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Ψ(x) is shown in panel (a), and the wavefunction Ψ′(x) modified by this measurement is

shown in panel (b). Although the wavefunction gets modified, the probability distribution

of the position measurement is the same in both cases. Since it is impossible to detect

this modification by measurement of x, the position measurements before and after the

action of E are indistinguishable and therefore the disturbance should vanish. As another

example consider a qubit prepared initially in the eigenstate of σz, |0〉. Now let σy be

the first (disturbing) measurement and σx the second (disturbed) measurement. Even

though the initial state |0〉 is highly disturbed by the measurement of σy (as it brings

pure state to a maximally mixed one), the measurement of σx is not disturbed, as the two

outcome statistics (with and without preceeding measurement of σy) are exactly the same,

p+ = p− = 1/2. Similar example can be given for the case of the noisy measurement.

Let the initial state of a qubit be again |0〉 and the perfect measurement one wants to

perform be σx. Now any measurement along the direction lying in the XY plane of the

Bloch sphere, e.g. σy, has vainishing noise, as it yields the same probability outcome

distribution as the desired measurement of σx. This is a direct consequence of the fact

that the symmetric components of |0〉 with respect to symmetries generated by both σx

and σy are the same.

2.2 Error and disturbance based on the Kolmogorov

variational distance

According to the reasoning presented in the previous section, the definitions of noise

and disturbance should only be dependent on the suitably defined difference between

the probability distributions of a perfect and actual measurement. Divergences, which

are the functions that establish distance measures between probability distributions on

a statistical manifold, are perfect candidates for such definitions. In this section we

will propose the use of one of them, the Kolmogorov variational distance, justify this

choice by giving its operational meaning and find the analytical expressions for noise and

disturbance.

Let us start in a quantum information fashion by considering two games that will give

us the operational intepretation of the proposed definitions. In the Game 1 (the quantum

disturbance game) Alice is in possesion of an ensemble of identically prepared states, ρ⊗N ,

a device that performs a projective measurement of observable B and a black box. The

action of the black box on an input state ρ is doing nothing (applying identity operation)

with probability 1/2 and performing a POVM measurement E (but not giving the outcome

to Alice), also with probability 1/2. In this game Alice has to put all her states into a

black box and her goal is to guess what was the action of the black box on each state. If
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she did not have the device that measures B, her average success rate would be 1/2 (just

blind guessing). Having this device however gives her access to the symmetric part of the

measured state. Therefore if the symmetric part of ρ differs from the symmetric part of

E(ρ), her average success rate will exceed 1/2. This increase in the success rate quantifies

how sensitive the outcome probability distribution for the measurement of B is to the

action of E . Let us denote this probability distribution when black box does nothing by

pn(ρ) and when it performs POVM E by p′n(ρ) = pn(E(ρ)). Using the maximum likelihood

estimation (MLE) method Alice’s success rate for distinguishing between the two actions

of a blackbox is given by

pD =
1

2
+

1

4

∑
n

|pn(ρ)− p′n(ρ)| = 1

2
+K(pn(ρ), p′n(ρ)), (2.2)

where K(pn(ρ), p′n(ρ)) is the Kolmogorov variational distance between probability distri-

butions pn(ρ) and p′n(ρ). One can use pD to quantify disturbance, as it measures the

probability of distinguishing a perfect measurement from a disturbed one. In order to get

vanishing disturbance for a perfect measurement and 1 for maximally disturbed one, the

disturbance of a measurement of B in a state ρ caused by preceeding POVM measurement

E can be defined as

η(B, E , ρ) = 2K(pn(ρ), p′n(ρ)). (2.3)

Game 2 (the quantum noise game) is similar to the first one. Alice is again in possesion

of an ensemble ρ⊗N and a different black box. This time the black box performs a

projective measurement of observable A with probability 1/2 or a POVM measurement

E , also with probability 1/2. In both cases Alice is informed about the outcome. The goal

of the game is again to guess which action the black box performed. Let qn(ρ) and q′n(ρ)

be the probability distributions of the measurement outcomes of A and E , respectively.

Using MLE Alice’s success rate is given by

pN =
1

2
+K(qn(ρ), q′n(ρ)). (2.4)

Similarly to the disturbance case the noise of the measurement of A in a state ρ when

POVM E is performed instead, can be defined as

ε(A, E , ρ) = 2K(qn(ρ), q′n(ρ)). (2.5)

One can express ε and η with the use of detection operators of E , Mn, and the eigen-

states of A and B, {|an〉} and {|bn〉},

ε(A, E , ρ) =
1

2

∑
n

∣∣Tr
(
ρ(|an〉 〈an| −M †

nMn)
)∣∣ , (2.6a)

η(B, E , ρ) =
1

2

∑
n

∣∣∣∣∣Tr

(
ρ(|bn〉 〈bn| −

∑
m

Mm |bn〉 〈bn|M †
m)

)∣∣∣∣∣ . (2.6b)
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Unfortunately no error-disturbance trade-off relation has yet been found for the above

definitions of ε and η.

It is also interesting to note that there exists no projective measurement that has

disturbance equal to 1, i.e. that can always be detected in the scheme presented above.

The optimal arrangement to detect a measurement of A by measuring B is to prepare

the initial state in the eigenstate of B, |b0〉 (in general the sharper the distribution, the

easier it is to disturb it). Then the measurement of A transforms the state into

ρ′ =
∑
n

| 〈an|b0〉 |2 |an〉 〈an| . (2.7)

and the probability of getting b0 outcome from measurement of B changes from 1 to

p =
∑
n

| 〈an|b0〉 |4 =
∑
n

p2n. (2.8)

The corresponding disturbance (scaled Kolmogorov distance) is then equal to

η(B,A, |b0〉) = 2K = 1− p. (2.9)

In order to find the maximal possible disturbance over all measurements of A one has to

find the extremum of p, which can be done using the Lagrange multipliers method with

the constraint
∑

n pn = 1. Defining Lagrangian

L =
∑
n

p2n + λ

(∑
n

pn − 1

)
, (2.10)

one has
∂L
∂m

=
∑
n

2pn
∂pn
∂pm

+ λ

(∑
n

∂pn
∂pm

)
= 2pm + λ = 0, (2.11)

so that ∀npn = −λ/2, which, taking the constraint into account, gives ∀npn = 1/N , where

N is the dimension of the Hilbert space. Therefore the minimal p is

pmin =
∑
n

p2n =
∑
n

1

N2
=

1

N
, (2.12)

and the corresponding maximal possible disturbance

ηmax(B,A, |b0〉) = 1− 1

N
. (2.13)

2.3 Sequential measurements of a qubit

Let us now discuss the properties of noise and disturbance fulfilling the presented re-

quirements for the simplest case of two qubit observables. The sequential measurement

scenario is as follows. The system is initially prepared in a pure state

|ψ〉 〈ψ| = 1 + c · σ
2

. (2.14)
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The perfect measurement that one wants to perform is given by

A = a · σ = |a0〉 〈a0| − |a1〉 〈a1| , (2.15)

the measurement that is actually performed (noisy one) is given by

M = m · σ = |m0〉 〈m0| − |m1〉 〈m1| , (2.16)

and the measurement that is disturbed by measuring M is given by

B = b · σ = |b0〉 〈b0| − |b1〉 〈b1| . (2.17)

As a result of a simple calculation one obtains the probability distributions of a perfect

and noisy measurements of A, i.e. of A and M :

Perfect measurement Noisy measurement

p(A = a0) = 1+c·a
2

p(M = m0) = 1+c·m
2

p(A = a1) = 1−c·a
2

p(M = m1) = 1−c·m
2

Similarly one can obtain the probability distributions of a perfect and disturbed (by

measuring M) measurements of B:

Perfect measurement Disturbed measurement

p(B = b0) = 1+c·b
2

p′(B = b0) = 1+c·mm·b
2

p(B = b1) = 1−c·b
2

p′(B = b1) = 1−c·mm·b
2

Let us first analyze the general properties of noise and disturbance that are indepen-

dent of the precise definitions of ε and η (as long as they depend only on probability

distributions of the outcomes):

1. If c = m, i.e. the initial state |ψ〉 is the eigenstate of the measured observable M ,

then there is no change in the statistics of the measurement outcomes of B and

therefore no disturbance. This holds more generally for any system: if the initial

state ρ is diagonal in the basis of eigenstates of the first measurement, then no

measurement is disturbed. The reason for this is that in such case the initial state

is not modified by the measurement, ρ′ = ρ, so none of its classical contexts change.

2. If c ⊥ m, i.e. the initial state |ψ〉 is maximally asymmetric state of the measured

observable M , then the statistics of the measurement outcomes of B is changed to(
1
2
, 1
2

)
(for all B). This holds more generally as maximally asymmetric states of some

observable A are always mapped to maximally mixed states by the measurement of

A.
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3. If m ⊥ b, i.e. the eigenstates of the measured observable M are maximally asym-

metric states of the observable B (the eigenstates of M and B form maximally

unbiased bases, which are one of the subjects discussed in Chapter 4), then the

statistics of the measurement outcomes of B is changed to
(
1
2
, 1
2

)
(for all |ψ〉). This

holds more generally: for any 2 observables A and B if their eigenstates form mu-

tually unbiased bases, then, independently of the system state ρ, the measurement

of A makes the symmetric part of ρ with respect to B a maximally mixed state.

4. If for eigenstates of all observables A, B, M there exists a common completely

asymmetric state (which means that the Bloch vectors a, b, m lie in one plane) and

the initial state is that state, then perfect probability distributions are the same as

noisy and disturbed ones, so there is no noise and no disturbance. There is also a

generalization of this fact, which will be discussed in more detail in Sec. 4.4. In

short: for every dimension of Hilbert space there exist non-commuting observables

A and B and a pure state |ψ〉 such that perfect sequential measurements (with

vanishing noise and disturbance) of A and B are possible.

Another, however less rigorously defined, property is that the sharper the distribution

of the initial pure state over the eigenstates of the observable A one wants to measure (the

more symmetric the initial pure state is), the more prone the measurement is to errors.

As an example consider that one wants to perform a measurement of A = σz and that

initially the system is in the symmetric state |0〉. Any deviation from measuring along

z direction (by measuring observable M = m · σ, m 6= ẑ) will affect the measurement

outcomes statistics [change it from (1, 0) to (1+mz

2
, 1−mz

2
)]. On the other hand, if the

system is initially in the completely asymmetric state of A = σz, let say |+〉, then instead

of measuring exactly along z direction one can perform any measurement in the Y Z plane

of the Bloch sphere and get the same outcome statistics, so there is no measurement error.

Finally let us find the Kolmogorov distance based expressions for the noise and dis-

turbance of sequential measurements of a qubit

ε =
|c · (a−m)|

2
, (2.18)

η =
|c · (b−m · b m)|

2
. (2.19)

2.4 Ozawa’s approach

In recent years the approach to the problem of the measurement noise and disturbance that

got the most attention and recognition is the one proposed by Ozawa [2]. In this section
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we will first give a brief overview of the formalism he uses, his defintions of noise and

disturbance and the resulting universally valid reformulation of the Heisenberg uncertainty

principle [2]. Next, using Ozawa’s approach, we will find the noise and disturbance of

the previously discussed sequential measurements of qubit observables. Basing on this

example we will point out the general flaws of Ozawa’s formulation and its failure to

capture the state-dependent noise and disturbance of quantum measurements.

2.4.1 Overview of the formalism

The approach used by Ozawa bases on the indirect measuring scheme. Instead of mea-

suring the system observable A directly the system undergoes joint evolution U with the

probe and then the probe observable M is measured. The measuring interaction U and

the probe observable M are chosen so that the outcome statistics of the probe measure-

ment coincides with the outcome statistics of the original measurement of A. Formally

the system is prepared in the initial state |ψ〉 and its observables are given by

A = A⊗ 1, (2.20a)

B = B ⊗ 1. (2.20b)

The measuring probe (meter) is prepared in the state |ζ〉 and its observable is given by

M = 1⊗M. (2.21)

Then the composed system undergoes joint unitary evolution and the description is given

in the Heisenberg picture, so that states of the system and probe are constant and the

observables evolve into

A′ = U †(A⊗ 1)U, (2.22a)

B′ = U †(B ⊗ 1)U, (2.22b)

M ′ = U †(1⊗M)U. (2.22c)

The advantage of the indirect measurement scheme comes from the fact that, because

[B,M ] = 0 also [B′,M ′] = 0 and the observables B′ and M ′ can be simultaneously

measured. Therefore the problem of not simultaneously measureable observables A and

B is changed into the problem of finding optimal U , M and |ζ〉 such that M ′ simulates

the measurement of A and B′ simulates the measurement of B as precisely as possible.

The noise N(A) and disturbance D(B) operators are defined as the difference between

the original and modified observables,

N(A) = M ′ − A, (2.23a)

D(B) = B′ −B, (2.23b)
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and the noise and disturbance are quantified by the root-mean-square of the above oper-

ators it the state |ψ, ζ〉,

ε(A) = 〈N2(A)〉
1
2 = ||(U †(1⊗M)U − A⊗ 1) |ψ, ζ〉 ||, (2.24a)

η(B) = 〈D2(B)〉
1
2 = ||(U †(B ⊗ 1)U −B ⊗ 1) |ψ, ζ〉 ||. (2.24b)

Ozawa also presented the reformulation of his approach in terms of of POVM measure-

ments [15], which was later used in the paper on experimental verification of the theory

[16]. The detection operators Mm for the POVM measurement are defined by

Mm |ψ〉 = 〈m|U |ψ, ζ〉 ,

or equivalently by

U |ψ, ζ〉 =
∑
m

Mm |ψ,m〉 ,

where |m〉 are the eigenstates of the meter observable M with eigenvalues m. The defi-

nitions of noise and disturbance expressed with the use of these detection operators are

given by

ε2(A) =
∑
m

||Mm(m− A) |ψ〉 ||2, (2.25a)

η2(B) =
∑
m

||[Mm, B] |ψ〉 ||2. (2.25b)

In his seminal paper [2] Ozawa proves the following inequality

ε(A)η(B) + ε(A)σ(B) + σ(A)η(B) ≥ 1

2
|〈[A,B]〉|, (2.26)

where σ(A) =
√
〈A2〉 − 〈A〉2 is the standard deviation of A in the state |ψ〉. The above

inequality gives the trade-off relation for the noise and disturbance of sequential quantum

measurements and shows that it is dependent on the uncertainty of the measured operators

in the initial state of the system. The sketch of the derivation of this inequality and ways

to improve the bound will be presented in Sec. 4.1.3.

2.4.2 Application to sequential measurements of a qubit

Let us now apply Ozawa’s definitions to the measurements of two arbitrary observables

of a qubit (this is what was actually done in the paper on experimental verification of

Ozawa bound using neutron spins [16]). The system observables, similarly as before, are

given by

A = a · σ, (2.27)

B = b · σ, (2.28)

21



2.4. Ozawa’s approach

Figure 2.2: The definitions of angles appearing in Ozawa’s expressions for error and

disturbance of the qubit measurements visualised on the Bloch sphere.

and the indirect measurement (POVM which is actually a projective measurement) of

observable C,

C = c · σ, (2.29)

is performed. There are infinitely many realizations of such measurement, i.e. there are

infinitely many choices of |ζ〉, M and U . Let us quickly describe one of such realizations,

when the probe itself is also qubit: choose the meter observable to be M = σz, the

initial state of the apparatus to be |ζ〉 = |0〉 and the joint unitary evolution to be U =

|c0〉 〈c0| ⊗ 1 + |c1〉 〈c1| ⊗ σx, where
∣∣c0/1〉 denotes the positive/negative eigenstate of C.

Then one gets the following measurement operators

M0 |ψ〉 = 〈c0|ψ〉 |c0〉 ,

M1 |ψ〉 = 〈c1|ψ〉 |c1〉 ,

and the associated probabilities are p0 = | 〈c0|ψ〉 |2 and p1 = | 〈c1|ψ〉 |2, so that the above

indirect measurement process perfectly simulates the measurement of C.

Simple calculations lead to the following result for the noise and disturbance for the

measurements of the qubit observables

ε(A) = 2
∣∣∣sin α

2

∣∣∣ , (2.30)

η(B) =
√

2 |sin β| , (2.31)
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where the angles α and β are defined as

cosα = a · c, (2.32)

sin β = a · b, (2.33)

which can be visualised by looking at Fig. 2.2.

2.4.3 Discussion and criticism

Let us first focus on the properties of Ozawa’s definitions of noise and disturbance for

the case of sequential measurements of a qubit presented in the previous subsection. The

most important feature is that the noise and disturbance are completely independent of

the inital state of the measured system. Therefore they do not depend on the difference

between probability distributions of the perfect and actual measurement, which was our

requirement presented in this chapter. One could argue that Ozawa’s treatment of the

quantum measurement is different than the one proposed by us and that he may treat a

measurement to be disturbed not only when the probability distribution of the outcomes

changes, but more generally, when the state changes (something that we called the dis-

turbance of a state, not of a measurement). However, even in such situation Ozawa’s

definition of disturbance fails to be valid (physically meaningful), and the easiest way to

see this is to consider the following example. Let the system be initially in the eigenstate

|0〉 of the measured observable A = σz and let the second observable be B = σx. The

measurement of a system that already is in an eigenstate of the measured observable does

not change the system state at all, so it cannot disturb the subsequent measurement of

B in any way. However the disturbance obtained from the Ozawa’s expression in this

case is maximum and equal to
√

2. The conclusion is that, in the case of qubit measure-

ments, Ozawa’s definitions of noise and disturbance not only fail to fulfill the very basic

and physically motivated requirements presented in this chapter, but also give nonzero

disturbance when there is no change in the system state.

Let us now proceed to the general discussion on the origin of the presented flaws

of Ozawa’s formulation. In his paper [2] Ozawa emphasizes the importance of a state-

dependent definitions of the noise and disturbance and defines ε and η to be, seemingly,

dependent on the state of the measured system. He also requires perfect measurement

to satisfy the Born statistical formula. His justification of the definitions of ε and η is

based on two theorems. The first one states: ”The noise of the measurement of A, ε(A),

is zero for all state |ψ〉 if and only if M ′ satisfies the Born statistical formula for all states

|ψ〉 (i.e. the outcome statistics of M ′ is the same as of A for all states)”. The second

theorem states: ”The disturbance of the measurement of B, η(B), is zero for all state |ψ〉
if and only if B′ satisfies the Born statistical formula for all states |ψ〉 (i.e. the outcome
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statistics of B′ is the same as of B for all states)”. As can be seen from the example of the

qubit measurements this is not enough and, if one wants to have truly state-dependent

definitions of noise and disturbance, one should actually demand stronger requirements.

The requirements for the definition of noise and disturbance should be: for every state |ψ〉
for which the Born statistical formula is satisfied the noise ε (the disturbance η) should

vanish. Interestingly the followers of Ozawa’s approach in their paper criticizing alterna-

tive Busch’s approach [17] write: ”Busch et al.’s quantities describe the disturbing power

of a measuring device, quantifying how much the measurement could disturb some hypo-

thetical state, whereas Ozawa describes how much a given quantum state is disturbed”.

This proves that the general impression and understanding is that Ozawa’s definition cap-

ture the state-dependent noise and disturbance, even though this is not true, as explained

above.

2.5 Busch’s approach

Let us now shortly describe the alternative approach proposed by Busch et al. [9]. For a

given system state ρ and a sharp position value ζ Busch defines

D(ρ,Q′; ζ) = 〈(q′ − ζ)2〉
1
2

ρ,Q′ , (2.34)

where q′ are the results of approximate measurement Q′ of position observable Q. Now

the error of this approximate measurement is defined as

∆(Q,Q′) = lim
ε→0

sup{D(ρ,Q′; ζ)|ρ,ζ ;D(ρ,Q; ζ) < ε}. (2.35)

In other words: for every sharp value of position ζ find the state ρ, such that perfect

measurement Q gives outcome ζ with error smaller than ε, i.e. find the best representation

of a sharp value state. Then, for this state and sharp value, calculate D (root-mean-square

difference) for the approximate measurement Q′. The error is maximized over all possible

sharp value states (as, for example, an approximate measurement may be perfect in some

region x1 < x < x2, but not perfect outside and in this case to find the measure of error

one has to consider the worst case scenario). The disturbance of observable B is defined

in the same way as ∆(B,B′), where B′ is the effective measurement that one performs

when disturbing measurement of A was first done.

Let us now apply the above definitions for sequential measurements of a qubit. We

will use the notation already used in Sec. 2.3, Eqs. 2.14-2.17. In the discrete case one

does not have to take the limit ε→ 0 as there exist correct density matrices representing
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2.5. Busch’s approach

sharply valued states: for the first observable one wants to measure, A, we have

ζ0 = 1 → ρ0 =
1 + a · σ

2

ζ1 = −1 → ρ1 =
1− a · σ

2
,

and for the second (disturbed) one, B,

ζ ′0 = 1 → ρ′0 =
1 + b · σ

2

ζ ′1 = −1 → ρ′1 =
1− b · σ

2
.

Now, using the definition of ∆ one finds that the error and noise are exactly the same as

in the Ozawa’s case,

∆(A,M) = 2
∣∣∣sin α

2

∣∣∣ = ε(A),

∆(B,M) =
√

2| sin β| = η(B),

with angles α and β already defined by Eqs. 2.32-2.33.

The definitions of error and disturbance defined in the way proposed by Busch (in

general, not only in the case of qubits) are only good for initial state of the system being

the eigenstate of the observable one wants to measure - they quantify how the sharply

valued states are prone to error or disturbance. This is the upper bound of the error

(disturbance) taken over all initial states of the measured system, as eigenstates are most

prone to error (disturbance), as mentioned in Sec. 2.3.

Looking for the trade-off relation between the error of measuring A and disturbance

of measuring B does not have much sense with the Busch’s definitions of ε and η. This is

because ε(A) is defined for initial state being an eigenstate of A and the disturbance of B

is defined for initial state being an eigenestate of B and both this conditions cannot be

fulfilled simultaneously if [A,B] 6= 0. The product of the error of A and disturbance of B

according to Busch’s definitions has the following sense: the maximum error of A (over

all possible system states) times the maximum disturbance of B (over all possible system

states), whereas it should be: [the maximum error times the maximum disturbance] (over

all possible states). In other words, the maximization should be done simultaneously, not

separately. This is the point that also the Ozawa’s followers did in their paper criticizing

Busch [17]. In conclusion, we find that the Busch’s approach does not capture the state-

dependent problem of the noise and disturbance of quantum measurements.
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Chapter 3

Measurements in the presence of a

conservation law

This chapter presents the problem of quantum measurements in the presence of a con-

servation law, i.e. the limitation that a conservation law imposes on the information

available about the quantum state through measurements. The historical overview of

the traditional approaches to the measurement of quantum mechanical operators will be

given, starting from the Wigner’s seminal work [3], through the formal definition of the

Wigner-Araki-Yanase (WAY) theorem by Araki and Yanase [4, 18] to the most recent

result for the upperbound of the measurement precision by Ozawa [6]. Then the formu-

lation of the WAY theorem in terms of asymmetry resources will be given, and its proof

will be presented with the use of the tools introduced in Chapter 1.

3.1 Historical overview

In 1952 Wigner considered a simple measurement scheme in the presence of a conservation

law and showed that if the measured observable does not commute with the conserved

quantity, the repeatable measurement is impossible [3]. Specifically, he focused on the

measurement of the spin component along x direction, when the total angular momentum

(of the system and apparatus) along z is conserved. He used the general definition of the

measurement process of observable A in terms of a joint unitary evolution UA of the

measured system, initially in the state |φ〉, coupled to measuring apparatus, prepared in

the state |ξ〉,
UA(|φ〉 ⊗ |ξ〉) =

∑
n

〈an|φ〉 |an〉 ⊗ |χn〉 , (3.1)

where |an〉 are the eigenstates of A and demanding that the appartus states |χn〉 are

macroscopically distinguishable, i.e. 〈χn|χm〉 = δmn. Therefore the pointer (apparatus)

state |χn〉 indicates the measurement outcome an, which is the eigenvalue corresponding to
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3.1. Historical overview

the eigenstate |an〉. Note that this measurement process satisfies both the Born statistical

formula (as measurement outcome |an〉 is obtained with probability | 〈an|φ〉 |2) and the

repeatibility condition (as obtaining the measurement outcome an collapses the system

state to |an〉).
Now, applying the introduced measuring scheme to a particular case of spin 1/2 mea-

surement along the x direction, one gets

USx(|+〉 |ξ〉) = |+〉 |χ〉 , (3.2a)

USx(|−〉 |ξ〉) = |−〉 |χ′〉 , (3.2b)

where |±〉 = (|0〉 ± |1〉)/
√

2 are the eigenstates of the measured Sx spin operator. To

obtain the effect of measurement when the system is initially in the eigenstate of Sz
operator, one simply adds and subtracts the above equations,

USx(|0〉 |ξ〉) = |0〉 |σ〉+ |1〉 |τ〉 , (3.3a)

USx(|1〉 |ξ〉) = |0〉 |τ〉+ |1〉 |σ〉 , (3.3b)

where |σ〉 = (|χ〉 + |χ′〉)/
√

2 and |τ〉 = (|χ〉 − |χ′〉)/
√

2. Now it is easily seen that if the

total angular momentum along z, Lz, has to be conserved, such an evolution is impossible.

This is because the expectation value of Lz on the right hand sides of Eqs. 3.3a-3.3b is

the same, whereas on the left hand sides it differs by 1/2.

As the repeatable measuring scheme introduced in Eq. 3.1 fails to be universal and, as

Wigner argued, ”a measurement of spin components is practically possible”, an approx-

imate measuring scheme must exist. Therefore first he described a measuring process as

a general unitary evolution of the joint system,

USx(|+〉 |ξ〉) = |+〉 |χ〉+ |−〉 |η〉 , (3.4a)

USx(|−〉 |ξ〉) = |−〉 |χ′〉+ |+〉 |η′〉 , (3.4b)

and then argued that if the norms of the unnormalized pointer states |η〉 and |η′〉 can be

made arbitrarly small and 〈χ|χ′〉 = 0, then the repeatable measurement can be recovered

with arbitrary precision. By a suitable choice of the pointer states he then showed that

this precision is limited by

〈η|η〉 =
1

2n− 1
, (3.5)

where n is the upper bound for the angular momentum along z of the measuring apparatus.

Hence he proved that the precision of measurement is limited by the appropriately defined

size of the measuring apparatus.

A few years after the Wigner’s paper was published, Araki and Yanase generalized

and formalized his work by stating and proving what is now known as the WAY theorem
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[4]. They considered a measuring process described by Eq. 3.1 in a slightly more general

way by including possible degeneracies of the measured observable A. Here, however, the

degenerate spectrum will not be considered, as it does not change the reasoning signifi-

cantly, but makes the notation much more unclear (for details see [4]). The measurement

is thus described by

UA(|an〉 ⊗ |ξ〉) = |an〉 ⊗ |χn〉 . (3.6)

The conservation law is formulated in terms of additive, self-adjoint operator L = L1 ⊗
1 + 1⊗ L2 commuting with any unitary time-evolution operator U,

[U,L] = 0, (3.7)

which in particular includes the measurement process U = UA. Now, from the additivity

of L one has

〈an ⊗ ξ|L(am ⊗ ξ)〉 = 〈an|am〉 〈ξ|L2ξ〉+ 〈an|L1am〉 〈ξ|ξ〉

= δmn 〈ξ|L2ξ〉+ 〈an|L1am〉 . (3.8)

On the other hand, form unitarity of UA and commutation relation given by Eq. 3.7 one

also has

〈an ⊗ ξ|L(am ⊗ ξ)〉 = 〈UA(an ⊗ ξ)|UAL(am ⊗ ξ)〉

= 〈UA(an ⊗ ξ)|LUA(am ⊗ ξ)〉

= 〈an ⊗ χn|L(am ⊗ χm)〉

= 〈an|L1am〉 〈χn|χm〉+ 〈an|am〉 〈χn|L2χm〉

= δmn(〈an|L1am〉+ 〈χn|L2χm〉). (3.9)

Thus, by comparing Eqs. 3.8 and 3.9, the following condition is obtained,

〈an|L1am〉 = δmn 〈an|L1am〉 . (3.10)

This condition however implies that [L1, A] = 0, because

〈an|AL1am〉 = λn 〈an|L1am〉 = λnδmn 〈an|L1am〉 ,

〈an|L1Aam〉 = λm 〈an|L1am〉 = λnδmn 〈an|L1am〉 .

Therefore Araki and Yanase concluded that for the measurement process described by

Eq. 3.6 to be possible in the presence of the additive conservation law, the measured

observable must commute with the conserved quantity.

In his following work Yanase focused on the possibilities and limits of the approximate

measurement schemes. He pointed out an important requirement, which is now known
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3.2. Ozawa’s approach

as the Yanase condition, that the pointer observable should commute with the conserved

quantity. Otherwise, as he argued, the problem of precise measurement would just be

shifted from the system to the measuring apparatus, as the WAY theorem also applies

to the apparatus observable. He limited his considerations to the spin 1/2 measurement

along the x direction and used the general measurement scheme proposed by Wigner

and given by Eqs. 3.4a-3.4b. He also defined the lower bound for the probability of the

unsuccesful measurement by the minimum of

ε = 〈η|η〉+ 〈η′|η′〉 , (3.11)

and introduced the measure of the apparatus size

M2 = 〈ξ|Lξ〉 , (3.12)

i.e. the mean square value of the conserved quantity in the initial state of the apparatus.

With the use of a few approximations Yanase obtained the following bound for ε,

ε ≥ 1

M2
, (3.13)

which is again connected with the appropriately defined size of the measuring apparatus.

The recent works of Loveridge and Busch extend the results presented above. Firstly,

they showed that the original Araki and Yanase statement about the impossibility of a

repeatable measurement of A when [A,L1] 6= 0 can be reformulated in the following way: if

[A,L1] 6= 0 then the measurement of A must violate both the repeatability and the Yanase

condition [19]. This means that not only the repeatable measurements are impossible but

also the precise ones. Secondly, note that all results presented in this review are restricted

to observables with discrete spectrum. Loveridge and Busch extended these considerations

to continous unbounded quantities and provided the evidence for a WAY-type theorem

[20].

3.2 Ozawa’s approach

Quite recently a new approach to find the precision limits of approximate measurements

was proposed by Ozawa [6]. Instead of devising the unitary process responsible for the

measurement, he used the generalized Heisenberg uncertainty relation and obtained tight

limit independent of the chosen measuring scheme. His description of the measuring

process and the formalism he uses is very similar to the one presented in Sec. 2.4. However,

as his work on the WAY theorem preceeded his results on the error-disturbance relation,

we will present his original approach to provide the historical context and, at the end of

this section, we will show how the obtained bound for the precision of the WAY scenario
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3.2. Ozawa’s approach

measurement follows directly from the application of the error-disturbance relation to a

special case.

Initially the measured system S is prepared in an unknown state |ψ〉 and the probe

(apparatus) P is in the known state |ξ〉, so that the total system is described by |ψ〉⊗ |ξ〉.
In order to measure the observable A of the system S, the system is coupled to the

apparatus and the composite system S + P undergoes unitary evolution U(t) during the

measurement time t. After the measuring interaction the probe observable M is measured

and the outcome is recorded as the value of macroscopic outcome variable x. Using the

Heisenberg picture, i.e. A(t) = U †(t)(A ⊗ 1)U(t) and M(t) = U †(t)(1 ⊗ M)U(t), the

probability distribution for x is given by

Pr(x ∈ ∆) = ||EM(t)(∆)(|ψ〉 ⊗ |ξ〉)||2, (3.14)

where EM(t)(∆) is the spectral projection of the operator M(t) corresponding to the

interval ∆.

Now, according to Ozawa’s definition, the measurement is said to be precise if for all

states the probability distribution of the macroscopic outcome variable x is the same as

the probability distribution given by the Born statistical formula, i.e.

∀ |ψ〉 : Pr(x ∈ ∆) = ||EA(0)(∆) |ψ〉 ||2. (3.15)

To measure the departure from the precise measurement, the noise operator N is intro-

duced,

N = M(t)− A(0), (3.16)

which measures the difference between the obtained outcome and the actual state of the

system just before the measurement. The noise ε(|ψ〉) of the measurement for a certain

initial state |ψ〉 of the measured system is defined by the root-mean-square error in the

outcome of the measurement,

ε2(|ψ〉) = 〈N2〉 ≥ (∆N)2, (3.17)

where (∆N)2 = 〈N2〉 − 〈N〉2 denotes the variance of the nosie observable. The precision

limit ε for arbitrary initial state is the maximum of ε(|ψ〉) taken over all possible states

of the measured system S. The above definition of the noise is justified by the following

theorem: measurement is precise if and only if ε = 0.

Now one can find the tight bound for the measurement precision by using the general

uncertainty relation for the noise operator N and the conserved quantity L(0) = L1(0)⊗
1 + 1⊗ L2(0),

(∆N)2(∆L(0))2 ≥ 1

4
|〈[N,L(0)]〉|2. (3.18)
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Employing the fact that L1(0) and L2(0) are statistically independent one gets [∆L(0)]2 =

[∆L1(0)]2 + [∆L2(0)]2. Also, since the measured system and probe operators commute,

one has [M(t), L1(t)] = [A(0), L2(0)] = 0. Taking all these into account one obtains the

following bound for ε(|ψ〉),

ε2(|ψ〉) ≥ |〈[M(t), L2(t)]− [A(0), L1(0)]〉|2

4[∆L1(0)]2 + 4[∆L2(0)]2
. (3.19)

One could think, looking at the above expression, that by choosing |ξ〉, U(t) and M so

that

〈ξ|U †(t)(1⊗ [M,L2])U(t) |ξ〉 = [A,L1], (3.20)

the measurement noise ε can be put to zero. Note however that without the Yanase

condition fulfilled, one cannot measure M precisely and another measuring apparatus and

noise operator should be introduced to measure the probe system P. Such a sequence of

measuring apparatuses and probe observables is necessary until one of them will commute

with the conserved quantity. Therefore, effectively, one can consider only the case for

which the Yanase condition is fulfilled, i.e. [M,L2] = 0. Hence the fundamental noise

bound is given by

ε2(|ψ〉) ≥ |[A(0), L1(0)]〉|2

4[∆L1(0)]2 + 4[∆L2(0)]2
. (3.21)

Let us now show, how the above bound can be obtained with the use of Ozawa’s

universally valid error-disturbance uncertainty relation, given by Eq. 2.26. It is enough

to choose the second observable B to be the additive conserved quantity,

B = L = L1 ⊗ 1 + 1⊗ L2, (3.22)

and note the the conservation law enforces the disturbance η(L) to vanish. The error-

disturbance relation then changes to

ε(A)σ(L) ≥ 1

2
|〈[A,L1]〉|, (3.23)

which can be easily transformed to Eq. 3.21.

3.3 Asymmetry resource approach

Now, basing on the Ref. [10], the proof of the WAY theorem, with the use of the resource

theory of asymmetry formalism introduced in Chapter 1, will be presented.

The joint time evolution of the measured system and measuring apparatus is described

by the unitary operator U(t). The presence of the additive conservation law for operator

N = N1 ⊗ 1 + 1 ⊗ N2 restricts this time evolution to unitaries U(t) invariant under

transformations generated by N , so that

[U(t), N ] = 0. (3.24)
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One can show that the restriction induced by this conservation law for the quantum

operation E , describing the time evolution of the system alone, is that E must be U(1)-

covariant [10]. Therefore to describe the measurement process one can focus only on the

transformations of the measured system (omitting the apparatus) that are U(1)-covariant.

In order to precisely measure the observable A with non-degenerate spectrum, A =∑
i ai |ai〉 〈ai| =

∑
i aiρi, and in the presence of a conservation law for N one requires

POVM quantum operation M =
∑

iMi such that

∀i 6= k :Mi(ρk) = 0, (3.25a)

∀ρ :
∑
i

Tr[Mi(ρ)] = 1, (3.25b)

∀g ∈ G : [M,U(g)] = 0. (3.25c)

In other words one needs to find U(1)-covariant quantum operation M that allows for

perfect unambiguous discrimination between the eigenstates of A (perfect meaning that

the probability of measurement failure is zero, i.e. every measurement is succesful). This

can be achieved by considering all possible quantum operations without the restriction

to U(1)-covariant transformations, which are then projected onto the set of the U(1)-

covariant ones. Such a projection can be achieved by the G-twirling,

M→ M̄ =

∫
dgU(g) ◦M ◦ U †(g). (3.26)

Similarly defining G-twirling for the states,

ρ→ ρ̄ =

∫
dgU(g)ρU †(g), (3.27)

so that ρ̄ is a projection of ρ onto the set of U(1)-invariant (symmetric) states, one can

rewrite the requirements 3.25a-3.25c as

∀i 6= k : M̄i(ρk) = 0, (3.28a)

∀ρ :
∑
i

Tr[M̄i(ρ)] = 1. (3.28b)

The above conditions are however equivalent to

∀i 6= k :Mi(ρ̄k) = 0, (3.29a)

∀ρ :
∑
i

Tr[Mi(ρ̄)] = 1, (3.29b)

which means that one needs to find unconstrained quantum operationM that allows for

perfect unambiguous discrimination between G-twirled eigenstates of A.

This way the existence of a precise measurement of A is conditioned by the possibility

of perfect distinguishibility between the set of states {ρ̄i}. One can discriminate {ρ̄i}
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perfectly if and only if {ρ̄i} have orthogonal supports. This is true only if all the states

in G-twirled ensemble have rank one (as the number of states in the ensemble is equal to

the dimension of the Hilbert space). Therefore one has to have

∀i :

∫
dgU(g) |ai〉 〈ai|U †(g) = |φi〉 〈φi| . (3.30)

Note however that pure states are the extremal points of the state space, i.e. they cannot

be constructed as a convex combination of other states. Hence the only possibility to

fulfill Eq. 3.30 is

∀g ∈ G : |φi〉 〈φi| = |ai〉 〈ai| = U(g) |ai〉 〈ai|U †(g), (3.31)

that is A must commute with N1, which proofs the WAY theorem.
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Chapter 4

Uncertainty Relations

In this chapter different results from the general field of uncertainty relations are presented

and applied to the problems presented in the previous three chapters: relation between

different asymmetric properties of a quantum state, the noise-disturbance relation and

the WAY scenario measurement. First the oldest improvement of the Heisenberg uncer-

tainty relation, known as the Schrödinger uncertainty relation, is described and applied

to improve the bounds obtained by Ozawa. Then the notion of the skew information is

introduced and linked with the asymmetry resources. This link allows to use the gen-

eralizations of the Heisenberg uncertainty relation for mixed states that use the skew

information to obtain the bound for the asymmetry resources of a quantum state with

respect to two non-commuting observables. These generalized relations are also used

to improve Ozawa’s bounds. Finally with the use of the entropic uncertainty relations

another bound for asymmetric resources with respect to two different observables is ob-

tained and the connection between the noise (disturbance) of quantum measurement and

the mutually unbiased bases is presented.

4.1 Schrödinger-Robertson uncertainty relation

4.1.1 Derivation and justification

The standard derivation of the uncertainty relation is based on the use of the Schwartz

inequality in the space of linear operators. Let’s define the inner product of two operators

A and B as

〈A,B〉ρ = Tr
(
ρA†B

)
, (4.1)

for which one can easily check the inner product defining properties: linearity, positive

definiteness and conjugate symmetry. Now using the Schwartz inequality one obtains

〈A,A〉ρ〈B,B〉ρ ≥ |〈A,B〉ρ|2. (4.2)
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4.1. Schrödinger-Robertson uncertainty relation

Defining the observables with subtracted average values,

Ã = A− Tr (ρA) 1 = A− 〈A, 1〉ρ1, (4.3a)

B̃ = B − Tr (ρB) 1 = B − 〈B, 1〉ρ1, (4.3b)

one has

〈Ã, Ã〉ρ = Tr
(
ρA2

)
− (Tr (ρA))2 = V (ρ,A), (4.4a)

〈B̃, B̃〉ρ = Tr
(
ρB2

)
− (Tr (ρB))2 = V (ρ,B), (4.4b)

where V (ρ, ·) denotes the variance in a state ρ, and

〈Ã, B̃〉ρ = Tr (ρAB)− Tr (ρA) Tr (ρB) . (4.5)

Rewriting the product of A and B as the sum of commutator and anticommutator,

AB =
1

2
[A,B] +

1

2
{A,B}, (4.6)

and using the Schwartz inequality, Eq. 4.2, for the operators Ã and B̃ one arrives at

V (A)V (B) ≥
∣∣∣∣12〈[A,B] + {A,B}〉 − 〈A〉〈B〉

∣∣∣∣2 , (4.7)

where we dropped ρ assuming that all the averages are taken in the state ρ (unless

stated otherwise) and 〈·〉 denotes the average value. Using the fact that the expectation

value of a commutator (anticommutator) is purely imaginary (real), the standard deriva-

tion of the uncertainty relation uses |x|2 = (Rex)2 + (Imx)2 ≥ (Imx)2 and thus gives the

Heisenberg-Roberston uncertainty relation,

V (A)V (B) ≥ 1

4
|〈[A,B]〉|2 . (4.8)

However, as was pointed out already in 1930 by Schrödinger [21], to fully exploit the

Schwartz inequality one cannot omit the anticommutator part and should use

V (A)V (B) ≥ |〈[A,B]〉|2 + |〈{A,B}〉 − 2〈A〉〈B〉|2

4
, (4.9)

which is the Schrödinger-Robertson uncertainty relation.

The usual omission of the anticommutator part may come from the fact that for

canonically conjugated variables x and p, i.e. [x, p] = i~, the commutator part of the

inequality never vanishes, whereas there exist states of minimum uncertainty for which

the anticommutator part vanishes. However, as we are interested in the uncertainty

relation for: (i) general observables (not only canonicaly conjugated ones), (ii) general

states (not only the minimum uncertainty ones), we should not omit the anticommutator

part and use the full uncertainty relation given by Eq. 4.9.
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4.1. Schrödinger-Robertson uncertainty relation

Too see the validity and the difference between the two uncertainty relations more

clearly let us consider an example of a two-level system and two non-commuting observ-

ables given by Pauli matrices σz and σx. Let the (not necessarily pure) state of the system

be described by the Bloch vector (nx, ny, nz), so that n2
x + n2

y + n2
z ≤ 1. In this simple

case one can directly calculate the product of uncertainties as 〈σ2
α〉 = 1 and 〈σα〉2 = n2

α

(for α = x, z), so that

V (σz)V (σx) = 1− n2
x − n2

z + n2
xn

2
z ≥ n2

y + n2
xn

2
z, (4.10)

and the equality holds only for pure states. Now one can compare the above result with

the bounds given by the two uncertainty relations. The commutator of the considered

observables is given by [σz, σx] = 2σy and the anticommutator by {σz, σx} = 0. Therefore

the Heisenberg uncertainty relation gives

V (σz)V (σx) ≥ n2
y, (4.11)

whereas the Schrödinger uncertainty relation yields

V (σz)V (σx) ≥ n2
y + n2

zn
2
x. (4.12)

As can be seen the Schrödinger-Robertson relation yields a tight bound for all pure states,

whereas the Heisenberg-Robertson relation fails to give any positive bound for the states in

the XZ plane of the Bloch sphere. In general the bound given by Schrödinger uncertainty

relation will always be tighter than the one given by the Heisenberg uncertainty relation.

Finally let us note that by defining the covariance of two observables A and B by

Cov(A,B) =

〈
AB +BA

2

〉
− 〈A〉〈B〉, (4.13)

which is the symmetrized version of covariance of two random variables (as the correct

expression for the product of two non-commuting observables should be (AB +BA)/2),

one can rewrite the Schrödinger-Robertson relation, Eq. 4.9, as

V (A)V (B) ≥ 1

4
|〈[A,B]〉|2 + |Cov(A,B)|2, (4.14)

or even more compactly by introducing the covariance matrix [21],

σ(A,B) =

(
V (A) Cov(A,B)

Cov(A,B) V (B)

)
, (4.15)

to obtain

det(σ(A,B)) ≥ 1

4
|〈[A,B]〉|2 . (4.16)
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4.1. Schrödinger-Robertson uncertainty relation

4.1.2 Application to Ozawa’s bound for the WAY scenario

As described in Chapter 3, Wigner, Araki and Yanase showed that precise measurement of

an observable A not commuting with the additive conserved quantity L = L1⊗1+1⊗L2

is not possible [3, 4] and found the bound for the approximate measurement of such

observable to be limited by the (appropriately defined) size of the measuring apparatus

[18]. As Yanase used approximations in his derivation, the bound he found was not tight.

Recently Ozawa in his paper [6] tried to find the tight limit of the measurement accuracy

of the WAY-scenario observable A and claimed to obtain the ”fundamental noise bound”,

which applied to the spin system gives ”a correct lower bound, since our derivation uses

no approximation”. As we have described his derivation in Sec. 3.2, we just remind that

the most important step of the derivation is based on the use of the Heisenberg-Robertson

uncertainty relation to the noise operator N and the additive conserved quantity L, see

Eq. 3.18. However we have just pointed out in the previous subsection that it is the

Schrödinger-Robertson uncertainty relation (and not the Heisenberg-Robertson one) that

gives a tight bound in a general case. If one replaces Heisenberg inequality by the improved

Schödinger one and then follows Ozawa’s derivation, instead of obtaining Eq. 3.21, one

gets

ε2(|ψ〉) ≥
1
4
|〈[A,L1]〉|2 + |Cov(M,L2)− Cov(A,L1)|2

V (L1) + V (L2)
. (4.17)

In order to get the original Ozawa bound either both covariance terms must vanish or they

must be equal. The first condition is not valid in general and the second one requires that

the probe state |ζ〉 must depend on the system state |ψ〉, which (i) is not possible if |ψ〉 is

unknown (which is what Ozawa assumes); (ii) forbids the optimization of the probe state

|ζ〉 (the maximization of the variance is constrained by constant valule of covariance).

It is interesting to note that the skew information that will be described in the next

sections as a mean to improve the uncertainty relation for mixed states (i.e. to separate

uncertainty coming from classical lack of knowledge due to mixture of states from the

purely quantum uncertainty) was originally introduced by Wigner and Yanase [22] to

quantify the ”information which an ensemble described by a state vector or a statistical

matrix contains with respect to the not easily measured quantities” (not easily measured

quantity is defined by observable not commuting with the conserved quantity). Thus, the

skew information may serve as a link between the WAY scenario considerations and the

general uncertainty relations for mixed states.
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4.1. Schrödinger-Robertson uncertainty relation

4.1.3 Application to Ozawa’s noise-disturbance uncertainty re-

lation

In his derivation of the uncertainty relation for the noise and disturbance of the quantum

measurement Ozawa again used the Heisenberg-Robertson inequality [2], which means

that the error-disturbance bound can be tightened by improving the derivation with the

use of the Schrödinger-Robertson relation. Unlike the WAY-scenario bound, however, here

Ozawa did not aim to find the tight (fundamental) bound, but rather to get a universally

valid and physically meaningful compact expression for the trade-off relation. Thus using

the Heisenberg inequality instead of the Schrödinger one may have just been another

approximation on the way to get the nice final expression. Still, it is interesting to check

how the bound would be tightened if one used the Schrödinger uncertainty relation.

In order to see this, we will first briefly sketch Ozawa’s original derivation. The idea

is to use the definitions of noise and disturbance, given by Eqs. 2.23a-2.23b, and start

from the commutator identity,

[N(A), D(B)] + [N(A), B] + [A,D(B)] = −[A,B]. (4.18)

Then by taking the modulus of means of both sides and applying the triangular inequality

twice one arrives at

|〈[N(A), D(B)]〉|+ |〈[N(A), B]〉|+ |〈[A,D(B)]〉| ≥ |〈[A,B]〉|. (4.19)

Now by applying Heisenberg-Robertson inequality to all of the terms on the left-hand-side

of the above equation one gets√
V (N(A))V (D(B)) +

√
V (N(A))V (B) +

√
V (A)V (D(B)) ≥ 1

2
|〈[A,B]〉|. (4.20)

Finally by noting that ε(A) = 〈N2(A)〉 12 ≥
√
V (N(A)) and η(B) = 〈D2(B)〉 12 ≥

√
V (D(B))

(i.e. the average square is bigger than variance) one obtains

ε(A)η(B) + ε(A)
√
V (B) +

√
V (A)η(B) ≥ 1

2
|〈[A,B]〉|, (4.21)

which is exactly Ozawa’s noise-disturbance relation presented in Sec. 2.4.1 and given by

Eq. 2.26 (only with slightly different notation, σ →
√
V ).

The improvement must be done at the level of Eq. 4.19 by applying the Schrödinger-

Robertson inequality (its most compact version, Eq. 4.16) to all of the terms on the left

hand side,

[det(σ(N(A), D(B)))]
1
2 +[det(σ(N(A), B))]

1
2 +[det(σ(A,D(B)))]

1
2 ≥ 1

2
|〈[A,B]〉|. (4.22)
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4.2. Skew information

4.2 Skew information

Skew information was first introduced by Wigner and Yanase [22] as a non-entropic based

measure of information that a given state contains with respect to observables not com-

muting with the conserved quantity. They were motivated by the WAY theorem and the

fact that such observables are ”not easily measurable”, so that the entropy, which is a

measure of our total knowledge into which the knowledge of the value of any observable

enters in the same way, is not the best way to describe information content. They postu-

lated the requirements that an expression for the information content I should satisfy:

1. I(pρ1 + (1− p)ρ2) ≤ pI(ρ1) + (1− p)I(ρ2),

2. I(ρ) ≥ I(ρ1) + I(ρ2) for ρ1 = Tr2ρ and ρ2 = Tr1ρ,

3. The information content of the isolated system should be constant in time.

The first point, the convexity of function I, is physically motivated by the fact that the

information content of the union of two different ensembles ρ1 and ρ2 should be less than

average information content of the component ensembles, because by uniting the two

systems one ”forgets” from which ensemble a particular sample comes from. The second

point is motivated by the fact that by separating two subsystems one ”forgets” about any

correllations, so that the equality is obtained only for ρ = ρ1 ⊗ ρ2. The last requirement

comes from the fact that both quantum and classical evolution of the closed system is

described by the causal equations, so that the information about the isolated system at a

given time yields this information at any other time.

As a measure of information content satisfying the above conditions for pure state

Wigner and Yanase proposed the following definition

I(|ψ〉 〈ψ| , A) = Tr
(
|ψ〉 〈ψ|A2

)
− (Tr (|ψ〉 〈ψ|A))2, (4.23)

which is exactly the same as the variance of A in state |ψ〉, I(A) = V (A). They argued

that in the presence of a conservation law the information content of all pure states should

not be the same, which is the case when one is using the von Neumann entropy. Although

they wrote: ”whereas a characteristic vector of the conserved quantity contains no such

(skew) information, a state vector which lies skew to these characteristic vectors does”,

they did not give any operative meaning for the skew information. However, as we showed

in Sec. 1.2, if one restricts to pure states, then the variance (which is equivalent to the

skew information) of a state is an asymmetry monotone, and as such may be used to

quantify the asymmetry resource (with respect to the symmetry generated by operator

of a conserved quantity), so any of the operative meanings of such resource may be used.

For example I(|ψ〉 , A), the skew information of state |ψ〉 with respect to observable A,
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4.3. Uncertainty relations for mixed states

may quantify the information that can be encoded by this state using symmetric quantum

operations or the information loss after the G-twirling of |ψ〉.
There are many ways in which one may extend the definition of skew information,

Eq. 4.23, to the mixed states, so that it still fulfills the requirements for the measure of

information content. The original extended definition [22] is given by

I(ρ,A) = −1

2
Tr
(
[
√
ρ,A]2

)
= Tr

(
ρA2

)
− Tr (

√
ρA
√
ρA) , (4.24)

and is known as Wigner-Yanase skew information. The more general version of the above

expression is known as Wigner-Yanase-Dyson skew information and is given by

Is(ρ,A) = −1

2
Tr
(
[ρs, A][ρ1−s, A]

)
= Tr

(
ρA2

)
− Tr

(
ρsAρ1−sA

)
. (4.25)

It was proven by Lieb [23] that the above expression is convex in ρ, therefore it fulfills the

basic requirement for the information content (the other two postulated requirements are

also satisfied).

The reason why this thesis contains a section about the skew information is because

both Wigner-Yanase and Wigner-Yanase-Dyson skew information are the asymmetry

monotones and can be used to quantify asymmetry resource with respect to a given

U(1) symmetry. The proof is based on the construction of an asymmetry monotone from

the information monotone, in this case the relative Renyi entropy, and is neatly presented

in Ref. [7]. Because of that one can use the results concerning the skew information to

get insight into the asymmetric properties of quantum states. One of the fields where the

skew information has recently been used is the field of the Heisenberg-like uncertainty

relations for mixed states, which will be described in the following section.

4.3 Uncertainty relations for mixed states

4.3.1 Motivation and separation of uncertainties

Recently new uncertainty measures were used to enhance the Heisenberg and Schrödinger

uncertainty relations for mixed states. The main motivation is that the total uncertainty

of an observable A in a mixed state ρ, Vtot, comes both from classical mixing C and

quantum uncertainty Q, where of course for any measure used one should have Vtot > C

and Vtot > Q. The goal now is to find Heisenberg-like inequality for Q (or C), which

(due to Q,C < Vtot) will be a tighter bound than the original uncertainty relation. Luo

[24] proposed to separate the standard uncertainty measure, the variance V (ρ,A), into

classical, C(ρ,A), and quantum, Q(ρ,A), compontents in a linear fashion,

V (ρ,A) = C(ρ,A) +Q(ρ,A). (4.26)
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4.3. Uncertainty relations for mixed states

He also suggested that C and Q should satisfy the following requirements:

1. Q(pρ1 + (1− p)ρ2, A) ≤ pQ(ρ1, A) + (1− p)Q(ρ2, A),

2. C(pρ1 + (1− p)ρ2, A) ≥ pC(ρ1, A) + (1− p)C(ρ2, A),

3. Q(ρ,A) = V (ρ,A) and C(ρ,A) = 0 for ρ = |ψ〉 〈ψ|,

4. C(ρ,A) = V (ρ,A) and Q(ρ,A) = 0 for [A, ρ] = 0.

The justification of the first two requirements is that classical mixing should (should not)

increase classical (quantum) uncertainty. The third point is justified, because there is no

classical mixing in a pure state, so the whole uncertainty must be quantum. The last

requirement comes from the fact that when ρ and A commute they can be simultaneously

diagonalized and any eigenstate of ρ is an eigenstate of A, therefore, since ρ is a classical

mixture of its eigenstates, the quantum uncertainty should vanish.

Let us note that the separation of the total uncertainty into a sum of the classical

and quantum one (and not into some other function of C and Q) not only has a clear

physical meaning, but also has the advantage that by defining quantum uncertainty Q

that satisfies the aforementioned requirements, the classical uncertainty C fulfills these

requirements automatically. To see these let us first show that the variance is a concave

function of ρ, because

V (pρ1 + (1− p)ρ2, A) = p〈A2〉ρ1 + (1− p)〈A2〉ρ2 − (p〈A〉ρ1 + (1− p)〈A〉ρ2)2,

pV (ρ1, A) + (1− p)V (ρ2, A) = p(〈A2〉ρ1 − 〈A〉2ρ1) + (1− p)(〈A2〉ρ2 − 〈A〉2ρ2),

and by subtracting the second of the above equations from the first we get

p〈A〉2ρ1 + (1− p)〈A〉2ρ2 − p
2〈A〉2ρ1 − (1− p)2〈A〉2ρ2 − 2p(1− p)〈A〉ρ1〈A〉ρ2 =

p(1− p)〈A〉2ρ1 + p(1− p)〈A〉2ρ2 − 2p(1− p)〈A〉ρ1〈A〉ρ2 = p(1− p)(〈A〉ρ1 − 〈A〉ρ2)2 ≥ 0,

so that

V (pρ1 + (1− p)ρ2, A) ≥ pV (ρ1, A) + (1− p)V (ρ2, A). (4.27)

Now, if Q is convex then from concavity of the variance, the concavity of C follows

straightforwardly. The third and fourth requirements are also automatically fulfilled for

C if Q satisfies them.

4.3.2 Skew information based uncertainty relations

The separation of uncertainties proposed by Luo leaves us only with the ambiguity of

choosing the measure of the quantum uncertainty, Q, satisfying the aforementioned con-

ditions, as the classical uncertainty will be then defined by C = V − Q. As the skew
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4.3. Uncertainty relations for mixed states

information satisfies all requirements for the quantum uncertainty, it defines the following

separation:

Q(ρ,A) = Tr
(
ρA2

)
− Tr (

√
ρA
√
ρA) , (4.28a)

C(ρ,A) = Tr (
√
ρA0
√
ρA0) . (4.28b)

To find the improved uncertainty relation with the quantities defined above let us mix

the derivations presented in Refs. [25] and [26], so that one can easily obtain the two

results presented in these papers. We first define

Aρ+ =
1√
2
{√ρ,A0} (4.29a)

Aρ− =
1√
2

[
√
ρ,A0] (4.29b)

Now using the Hilbert-Schmidt inner product,

〈A,B〉 = Tr
(
A†B

)
, (4.30)

one has

||Aρ+||2 =
1

2
Tr
(
{√ρ,A0}2

)
= J(ρ,A0), (4.31a)

||Aρ−||2 = −1

2
Tr
(
[
√
ρ,A0]

2
)

= I(ρ,A0), (4.31b)

〈Aρ+Aρ−〉 = 0, (4.31c)

where I(ρ,A0) is Wigner-Yanase skew information and J(ρ,A0) is a quantity conjugated

to it. Let us also note that

I(ρ,A0) = I(ρ,A), (4.32a)

J(ρ,A0) = J(ρ,A)− 2(Tr (ρA))2. (4.32b)

Now using the Schwartz inequalities for operators Aρ+, Bρ− and Aρ−, Bρ+ one can obtain

the following relations:

I(ρ,A)J(ρ,B0) ≥
1

4
|〈[A,B]〉|2, (4.33a)

I(ρ,B)J(ρ,A0) ≥
1

4
|〈[A,B]〉|2. (4.33b)

By adding or multiplying both sides of the above inequalities one can obtain the result of

Ref. [25] and [26], respectively. The addition gives

V (ρ,A)V (ρ,B) ≥ 1

4
|〈[A,B]〉|2 + C(ρ,A)C(ρ,B), (4.34)

and the multiplication yields

U(ρ,A)U(ρ,B) ≥ 1

4
|〈[A,B]〉|2, (4.35)
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4.3. Uncertainty relations for mixed states

where

U(ρ,A) =
√
V 2(ρ,A)− (V (ρ,A)− I(ρ,A))2. (4.36)

The first of the above uncertainty relations is the Heisenberg-Robertson inequality,

Eq. 4.8, with the bound improved by the addition of the term coming from classical

uncertainty. It is important to note that Park in his paper [26] also found the similarly

improved (i.e. by adding new terms to the bound) Schrödinger-Robertson inequality,

however the additional terms are far more complicated than C(ρ,A)C(ρ,B) and required

approximations.

The second uncertainty relation is defined in terms of the new measure of uncertainty,

U(ρ,A), which may be treated as quantum uncertainty, because U = [V 2 − (V − C)2]
1
2 ,

so it measures the difference between total and classical uncertainty (which quantum

uncertainty should be). It can also be seen as another way of separating the uncertainty

into the classical and quantum components in a quadratic fashion,

V 2(ρ,A) = C2(ρ,A) + U2(ρ,A). (4.37)

Therefore Eq. 4.35 is also an improvement of the Heisenberg-Robertson inequality (as

U ≤ V ), with the interpretation that the standard commutator bound bounds not only

the total, but also the quantum uncertainty.

Both of these uncertainty relations may be used to improve Ozawa’s universally valid

error-uncertainty relations for mixed states. Especially the second one, because of the

same form as the Heisenberg-Robertson uncertainty relation used by Ozawa in his deriva-

tion, leads to a nice result for the trade-off relation,

ε(A)η(B) + ε(A)U(B) + U(A)η(B) ≥ 1

2
|〈[A,B]〉|, (4.38)

which is exactly the original relation, Eq. 2.26, with the total uncertainty V exchanged

by the quantum uncertainty U . Moreover Furuichi [27] recently derived the Schrödinger-

Robertson-like relation in terms of U ,

U(ρ,A)U(ρ,B) ≥ 1

4
|〈[A,B]〉|2 + |Corrρ(A,B)|2, (4.39)

where

Corrρ(A,B) = Tr

(
ρ
{A,B}

2

)
− Tr (

√
ρA
√
ρB) = Tr

(
ρ
{A0, B0}

2

)
− Tr (

√
ρA0
√
ρB0)

(4.40)

is the correlation term that is the counterpart of the original covariance term appearing in

Eq. 4.14. To understand the meaning of this additional term let us follow the reasoning

presented in Ref. [24]. Similarly as the variance V (measure of total uncertainty) can be

split into the skew information I (measure of quantum uncertainty) and C (measure of
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4.3. Uncertainty relations for mixed states

classical uncertainty), the covariance can also be split in the corresponding way (see Eqs.

4.28a-4.28b),

Covρ(A,B) = Qρ(A,B) + Cρ(A,B), (4.41a)

Qρ(A,B) = Tr

(
ρ
{A0, B0}

2

)
− Tr (

√
ρA0
√
ρB0) , (4.41b)

Cρ(A,B) = Tr (
√
ρA0
√
ρB0) . (4.41c)

Therefore the correlation term appearing in Eq. 4.39 can be interpreted as the quan-

tum part of the covariance (anticommutator) term appearing in the original Schrödinger-

Robertson inequality. Hence one can improve the Ozawa’s bound even further, by us-

ing both improvements: use the Schrödinger-Robertson relation instead of Heisenberg-

Robertson one and use the quantum component of uncertainties and covariances instead

of the total ones.

Note that natural improvement of the uncertainty relation with the use of the skew

information alone,

I(ρ,A)I(ρ,B) ≥ 1

4
|〈[A,B]〉|2, (4.42)

is not valid. However using the Schwartz inequality for operators Aρ− and Bρ− (see Eq.

4.29b) one finds

I(ρ,A)I(ρ,B) ≥ Qρ(A,B), (4.43)

so that the product of skew informations with respect to different observables is bounded

by the quantum component of the covariance of these observables. As the skew informa-

tion is the asymmetry monotone, the above result establishes a relation between asym-

metric properties of a quantum state with respect to two non-commuting observables.

For better understanding of the link between uncertainties and the asymmetry it is vital

to check whether U(ρ,A) is also an asymmetry monotone with respect to the symmetry

generated by A. If it is the case then, since U ”obeys” the Heisenberg-Robertson uncer-

tainty relation used by Ozawa, both Ozawa’s results (the error-disturbance relation and

the precision of the WAY scenario measurement) can be redefined in terms of asymmetry

monotones.

One more uncertainty relation that uses the skew information can be easily derived

[7],

I(ρ,A)V (ρ,B) ≥ 1

8
|〈[A,B]〉ρ|2. (4.44)

This is the least refined inequality from the ones presented in this section, however it can

be straightforwardly applied to change the Ozawa bound for the WAY scenario. Instead

of Eq. 3.21 one gets

ε2(ρ) ≥ |〈[A,L1]〉|2

8I(ρ, L1) + 8I(ρprobe, L2)
, (4.45)
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4.4. Entropic uncertainty relations

which is a stronger bound for mixed states for which V > 2I.

Some of the results described in this section can be further extended by generalizing

the Wigner-Yanase skew information to Wigner-Yanase-Dyson (WYD) skew information

[28]. The WYD skew information, Is, and the quantity conjugated to it, Js (similarly to

Eq. 4.31a), are defined by

Is(ρ,A) = Tr
(
ρA2

0

)
− Tr

(
ρsA0ρ

1−sA0

)
, (4.46a)

Js(ρ,A) = Tr
(
ρA2

0

)
+ Tr

(
ρsA0ρ

1−sA0

)
. (4.46b)

Introducing ls(ρ,A,B),

ls(ρ,A,B) = Tr (ρ[A,B])− Tr
(
ρ|2s−1|[A,B]

)
, (4.47)

one can prove that

Is(ρ,A)Js(ρ,B) ≥ 1

4
|ls(ρ,A,B)|2, (4.48a)

Is(ρ,B)Js(ρ,A) ≥ 1

4
|ls(ρ,A,B)|2, (4.48b)

so that also

Us(ρ,A)Us(ρ,B) ≥ 1

4
|ls(ρ,A,B)|2, (4.49)

where

Us(ρ,A) =
√
V 2(ρ,A)− (V (ρ,A)− Is(ρ,A))2. (4.50)

Thus the standard commutator bound is replaced by ls(ρ,A,B).

4.4 Entropic uncertainty relations

In 1983 Deutsch [29] proposed and motivated an alternative approach to the uncertainty

relations that uses the Shannon entropy to quantify uncertainty. Later, in 1988, Maassen

and Uffink [30] proved the generalized entropic uncertainty relation of the following form

1

2
(H(A, ρ) +H(B, ρ)) ≥ − log c(A,B), (4.51)

where H(A, ρ) is the Shannon entropy of the probability distributon of the measurement

outcomes of observable A in a state ρ and

c(A,B) = max
n,m
{|〈an|bm〉| : A |an〉 = an |an〉 , B |bn〉 = bn |bn〉 , (4.52)

so it is the maximum overlap between the eigenstates of observables A and B. Comparing

the definition of H(A, ρ) with the expression for the relative entropy of frameness for pure

states, Eq. 1.11, one can find out that these are the same. Therefore one can use the above
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4.4. Entropic uncertainty relations

entropic uncertainty relation to establish another relation between asymmetric resources

of a quantum state with respect to two non-commuting observables,

AsA(|ψ〉 〈ψ|) + AsB(|ψ〉 〈ψ|) ≥ −2 log c(A,B). (4.53)

It is worth noting that the strongest bound [the largest c(A,B)] is obtained for the

observables, eigenstates of which form the mutually unbiased bases, i.e.

∀n |an〉 =
1√
d

∑
m

eiφmn |bm〉 , (4.54)

where d is the dimension of the Hilbert space. The maximal bound is therefore equal

to log d. The classical contexts connected with such observables may be called mutually

excluding contexts, as having a state with definite value of one observable means that the

value of the other one is maximally uncertain (uniformly distributed). A general theorem

states that for every finite dimensional Hilbert space there exists at least three mutu-

ally unbiased bases [31]. This means that one can always find non-commuting mutually

unbiased observables A and B and a state |ψ〉 from the third unbiased basis, so that

∀n| 〈an|ψ〉 |2 = | 〈bn|ψ〉 |2 =
1

d
. (4.55)

There are two interesting facts connected with this result. First, since the probability

distribution of the outcomes are the same for A and B, therefore, according to the notion

of a state-dependent measurement noise introduced in Sec. 2.1, if instead of measuring A

one measures B, this measurement will be treated as noiseless. Similarly the measurement

of A will not affect the probability distribution of the measurement of B (with and without

preceeding measurement of A the probability distribution of the outcomes is uniform), so

according to the notion of a state-dependent measurement disturbance introduced in Sec.

2.1, the measurement of B is not disturbed by the measurement of A. This means that for

every finite-dimensional Hilbert space there exist a state for which two non-commuting

observables can be measured without any noise or disturbance. The second interesting

fact is that for two mutually unbiased observables A and B there always exists a state

|ψ〉 that maximizes the asymmetry resources with respect to U(1) symmetries generated

by both observables, i.e.

AsA(|ψ〉 〈ψ|) = AsB(|ψ〉 〈ψ|) = log d. (4.56)
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