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Introduction

With its possible applications, including spin memory or semiconductor spin-based quan-

tum computing, spintronics is a very promising branch of nanoscience [1]. However, for

the control and readout of spin states one has to maximize their life times. Therefore,

a large number of studies of spin dynamics and spin dephasing mechanisms in a vast

variety of semiconductors and their heterostructures were performed in recent years [2].

Extended life times observed recently in semiconductor nanostructures (especially for the

hole states [3]) seem very promising. Thus, the understanding of the properties of spins

in confined semiconductor systems is crucial for the further development and applications

of spintronics.

Optical experiments allow one to trace the evolution of electron and hole spins on pi-

cosecond time scales. One of such experiments is the time-resolved Kerr rotation (TRKR)

measurement [4], that is, the measurement of the rotation of the polarization plane of a

reflected beam induced by the spin polarization excited with an earlier pulse. Such an

experiment reveals the spin evolution (precession and decoherence) in between the two

pulses. If the spin coherence times are comparable with the repetition period of the

pulsed laser then a resonant spin amplification (RSA) becomes possible: if the preces-

sion frequency is a multiple of the laser repetition period a non-zero spin polarization is

established in the system [5].

This work is devoted to theoretical modelling of the TRKR and RSA experiments

performed on the p-doped quantum wells (QWs). First, the spin dynamics of the system,

induced by optical pumping, is studied. The description of precession in magnetic field,

decoherence and recombination processes for various experimental conditions is given.

Then, the relation between the studied spin orientation and the measured signal, i.e.,

experimentally accesible optical field, is constituted. This way the analytical expressions,

connecting the spin dynamics and the experimentally measured TRKR and RSA signals,

are obtained. These are then used to fit the experimental data and extract spin dynamics

parameters of the system. Additionaly, the microscopic spin decoherence mechanism,

based on the scattering of thermally released holes on localized ones, is proposed and

studied.
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Introduction

Motivation

Although a lot of research has been done concerning the spin dynamics of conduction-

band electrons [2, 6] much less attention has been paid to the hole spin dynamics in these

systems. This contrast can be explained by the strong spin-orbit coupling within the

p-like valence bands in bulk semiconductors, that results in subpicosecond spin dephasing

times (SDTs) [7, 8], which is crucial for the control and readout of spin states. However,

in p-doped GaAs QWs, in which localization of holes occurs at low temperatures, signif-

icantly longer hole SDTs have been observed recently [3, 9, 10]. What is more, due to

the p-like wavefunctions of the localized hole states, the contact hyperfine interaction is

supressed [11]. Therefore, localized hole states may be more suitable than electron ones

for the future applications. Additionally, due to the large anisotropy of the hole g-factor

in GaAs-based nanostructures [12], the hole spin dynamics is strongly affected by tilted

magnetic fields. This opens the way for spin manipulation schemes based on electrical

g-factor control [13, 14].

The purpose and methodology of the thesis

The main purpose of this work is to obtain analytical expressions for the Kerr and RSA

optical responses, that can reproduce experimental data for various experimental con-

ditions (like high power or off-resonant pumping). This allows one to extract the spin

dynamics parameters of the system, like the intrinsic (homogeneous) spin coherence time

T2, and the g-factor distribution in the ensemble. In order to achieve this the Markovian

master equation for the density matrix of the independent hole-trion systems is used, with

the decoherence processes described by the universal Lindblad superoperator. The dipole

approximation of the light-matter interaction is assumed and the influence of the pump

pulse on the system is treated perturbatively. The additional goal is to propose the micro-

scopic model of the spin decoherence that would, at least qualitatively, explain the thermal

dependence of the hole spin lifetimes in the p-doped QW. Here, the spin-exchanging scat-

tering probabilities of thermally released holes on localized ones are calculated with the

use of Fermi’s Golden Rule.

The scope of this work

This thesis is the result of the Characterization of spin stability, coherence and dephasing

by optical experiments project realized in between 2010 and 2012 as a part of Semicon-

ductor nanostructures for renewable energy, information processing and communication

technologies research project within the TEAM programme of Foundation for Polish Sci-

ence. Thanks to the fruitful collaboration with the Optical Spectroscopy of Semiconduc-
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Introduction

tor Quantum Structures experimental group from the Institut für Experimentelle und

Angewandte Physik, Universität Regensburg (which will be reffered to as the Regensburg

group), the developed theoretical model could be tested by comparison with the real ex-

perimental data. That is why, although the author of this thesis is responsible only for

the theoretical part, some experimental data are also shown throughout this work. The

main reason for this is to fully present the results of the whole project (some of which have

already been published, see Ref. [15]) and to prove that, indeed, the proposed theoretical

model describes the physical reality correctly.

Theoretical modelling of spin dynamics presented in this work is strongly based on

Ref. [16]. Original work consists of three main parts. First, the already existing model

was extended to account for the description of spin dynamics in weak magnetic fields (no

rotating wave approximation) and for nonresonant excitation (inclusion of the fast hole

spin decoherence). Secondly, the description of the resonant spin amplification experiment

was elaborated. Finally, the microscopic model of spin decoherence was developed.

Composition of the thesis

The thesis is divided into four chapters. The first chapter contains general description

of the investigated system and modeled experiments. In the second one, the Markovian

model of the spin dynamics in p-doped QWs is presented. Also the influence of the pump

pulse on the system is described, as well as the dependence of the probe pulse linear

polarization rotation on the spin orientation at the time it arrives at the sample surface.

The third chapter is devoted to the already mentioned microscopic decoherence mechanism

and calculation of the spin lifetime dependence on the temperature. In the fourth chapter,

all the results are collected. These contain the modelled results for the TRKR and RSA

signals for different magnetic field configurations (no magnetic field, Voigt configuration

and tilted field) and various excitation conditions (resonant, off-resonant and high power

pumping), as well as the fittings to the experimental data and the extracted spin dynamics

parameters. The comparison between temperature dependence of spin lifetimes obtained

from the microscopic model and the experiment is also presented. Additionaly, at the

end of the thesis, appendix devoted to the mathematical formulation of quantum open

systems, is attached.
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Chapter 1

System and modeled experiments

In this chapter, the physical system, spin dynamics of which is studied in this work, is

introduced. The basic facts about the system are presented, as well as the characteristics

of the QW sample used in the experiments performed by the Regenburg group. The

chapter also contains the general description of the experiments that give insight into

the microscopic evolution of the spin polarization, i.e., time resolved Kerr rotation and

resonant spin amplification.

1.1 Investigated system

This work focuses on modelling the spin dynamics of the carriers in p-doped semiconductor

quantum wells. In such systems, a rapid increase of hole spin dephasing is experimentally

observed above a certain threshold temperature. This is associated with thermal release

of the carriers from localization centers and the onset of spin-orbit-related dephasing

characteristic of free carriers. For applications, however, long spin lifetimes are necessary.

Therefore, the focus is put on the low temperature case, when the resident holes are weakly

trapped, most likely on QW width fluctuations [3, 14]. Then, the investigated system is

composed of localized holes that may be considered as independent and noninteracting.

It was also experimentally showed that in such structures at low densities and liquid-

helium temperatures, the optical recombination spectra are governed by recombinations

of neutral and positively charged excitons (positive trions). The scheme of the investigated

system is presented in Fig. 1.1, together with the basis of the Hilbert space, to which the

theoretical description is restricted (for more details see Sec. 2.1). It is worth noting that,

due to similiar behaviour of localized holes in QW and holes in the ensemble of quantum

dots (QDs) in a remotely p-doped structure, the developed theoretical model can also be

used in the latter case.

The sample used during the experiments performed by the Regensburg group was
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1.2. Time resolved Kerr rotation

Figure 1.1: Schematic picture of the investigated system (top): the QW with localized

hole and electron spins represented by blue and red arrows, respectively. The basis of

the considered Hilbert space (bottom): ”spin-up” and ”spin-down” states with definite

projections on the growth axis (normal to the QW plane) for holes (| ↑〉, | ↓〉) and trions

(|T ↑〉, |T ↓〉).

a single-side p-modulation-doped GaAs/Al0.3Ga0.7As QW. It had a width of 4 nm and

contained two-dimensional hole system with a hole density p = 1.1·1011 cm−2 and mobility

µ = 1.3 · 104 cm2/Vs (measured at 1.3 K). It was grown by molecular beam epitaxy from

a single wafer.

1.2 Time resolved Kerr rotation

Time resolved Kerr rotation (TRKR) is one of the main experiments used in the study

of spin dynamics in nanostructures. It allows one to optically create spin polarization in

the system and then to measure the remaining magnetization after some adjustable delay

time. The main feature of the TRKR experiment is the pump-probe measuring scheme

(Fig. 1.2). First, at a time t0, a circurarly polarized pump pulse arrives at normal incidence

to the sample surface and, due to optical selection rules, creates optically oriented electron-

hole pairs. The laser is tuned to the heavy hole transition and is spectrally narrow enough

to neglect the light hole contribution due to relatively large heavy-light hole splitting

in QWs. This, together with the already mentioned fact about recombination spectra,

results in the non-equilibrium heavy hole and positive trion spin polarization in the system

(see Fig. 1.3). Then, after the delay time τ , at the time t0 + τ , a linearly polarized

pulse arrives at the structure surface. It induces a time-dependent dipole moment, which
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1.2. Time resolved Kerr rotation

depends on the spin polarization of the system due to different absorption of the left

and right circurarly polarized components of the linearly polarized probe pulse. This

time-dependent dipole moment is the source of coherent radiation and, together with

the reflected part of the probe pulse, is measured in the homodyne detection scheme.

The superposition of these two components results in the tilting of the original linear

polarization, which is called the Kerr effect (Fig. 1.2). Thus, repeating the experiment

with different delay times τ (which is experimentally achieved using a mechanical delay

line), one can measure the time evolution of the spin polarization in the system.

Figure 1.2: Schematic picture of the pump-probe measuring scheme. The Kerr rotation

corresponds to the tilt of the original probe pulse linear polarization, after reflection from

the spin-polarized surface.

Figure 1.3: Allowed (red, solid lines) and forbidden (grey, dashed lines) transitions in the

system for the right and left circurarly polarized excitation.
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1.3. Resonant spin amplification

1.3 Resonant spin amplification

While the TRKR experiment allows one to measure spin dynamics with high temporal

resolution, limited only by the precision of the mechanical delay line (usually of the

order of a picosecond), it is not the best way to measure long time evolution. This

is mainly due to the experimental setup, which needs around 30 cm mechanical delay

line for each 1 ns of time evolution. Thus, for measuring long-lived spin dynamics the

resonant spin amplification (RSA) technique, with similiar experimental setup, is used.

It is based on the interference of spin polarizations created in a sample by subsequent

pump pulses. For certain magnitudes of the applied magnetic field, the optically oriented

spin polarization precesses around it by an integer multiple of 2π in the time window

between subsequent pump pulses, so that constructive interference occurs (the schematic

mechanism of formation of the RSA signal is presented in the Fig. 1.4). This is seen in

the experiment as pronounced maxima in the Kerr rotation angle measured for a fixed

time delay as a function of the applied magnetic field (Fig. 1.5).

Figure 1.4: Schematic mechanism of formation of the RSA signal. The time delay in

between pump pulses (the repetition period), trep, corresponds to one period of spin

precession (top, maximum of constructive interference is obtained) and one quarter of this

period (bottom). On the right, the blue arrows represent the spin polarization after the

first pump pulse and the red ones show the change of the spin polarization by subsequent

pump pulses. The decoherence is included in the picture, so that the spin polarization

achieves stable value after some number of pulses.
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1.3. Resonant spin amplification

Figure 1.5: Exemplary RSA trace: maxima observed for a magnetic field for which the

product of the precession frequency Ω and the repetition period of the pumping laser trep

is an integer multiple of 2π.
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Chapter 2

Markovian model of spin dynamics

This chapter contains the detailed information about modelling the spin dynamics in a p-

doped QW system in the Markovian limit. Minimal, generic model that is able to account

for all the features of the spin dynamics observed in the experiment, without specific

assumptions on the detailed mechanism of spin decoherence (which will be described in

Chapter 3), is proposed. First, the description of the system in the magnetic field in the

density matrix formalism is introduced. Next, the focus is put on the influence of the

pump pulse on the system state. This includes two steps: unitary evolution under the

excitation tuned to the hole-trion transition and the fast initial hole spin decoherence due

to excess energy delivered to the system. Then, the system evolution (Larmor precession,

recombination and spin decoherence) is modeled in terms of a Markovian master equation

using the universal Lindblad superoperator (more details about this formalism can be

found in the Appendix). Next, the descripton of the RSA experiment is given in terms

of the repetitive, three-step transformation (pumping, fast decoherence and standard

evolution). Finally, the description of the interaction of the probe pulse with the system

and the homodyne detection scheme, that results in the Kerr rotation, is given. The

derivations and reasoning presented in this chapter are based or inspired by Ref. [16] and

[17].

2.1 Model of the investigated system

The optical response of a system composed of localized holes (trapped in QW fluctua-

tions), which will be considered independent (noninteracting), will be modeled. Due to

the usually large heavy-light hole splitting in confined systems the description will be

restricted only to the heavy hole states, with the assumption that in thermal equilibrium

each trapping centre accomadates at most one hole. Taking into account previous experi-

mental findings about the recombination spectra in such systems [3, 14], the fundamental
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2.1. Model of the investigated system

optical transition at each trapping center is described as an excitation of an electron-hole

pair, which, together with the resident hole, forms a bound trion. All these assumptions

allow to describe the optical response in terms of independent hole-trion systems. The

driving pulse is also assumed to be spectrally narrow and temperature low enough, so

that the description of the system can be restricted to the lowest hole and trion states.

The state of such system will be represented by the density matrix ρ, restricted to the

four states, |↑〉, |↓〉, |T ↑〉, |T ↓〉, that represent the two hole and the two trion states with

different spin orientations (with respect to the normal to the QW plane). Now, the density

matrix can be parametrized by introducing the set of dynamical variables describing the

evolution of the system. These consists of the trion and hole populations,

Nt(t) = Tr
(
N̂tρ(t)

)
, N̂t = 1√

2
(|T ↑〉〈T ↑|+ |T ↓〉〈T ↓|) ,

Nh(t) = 1−Nt(t),
(2.1)

the trion and hole spin polarizations,

Σt(t) = Tr
(

Σ̂tρ(t)
)
, Σ̂t = 1√

2
(|T ↑〉〈T ↑| − |T ↓〉〈T ↓|) ,

Σh(t) = Tr
(

Σ̂hρ(t)
)
, Σ̂h = 1√

2
(|↑〉〈↑ | − |↓〉〈↓ |) ,

(2.2)

and the trion and hole spin coherences,

Xt(t) = Tr
(
X̂tρ(t)

)
, X̂t = 1√

2
(|T ↑〉〈T ↓|+ |T ↓〉〈T ↑|) ,

Xh(t) = Tr
(
X̂hρ(t)

)
, X̂h = 1√

2
(|↑〉〈↓ |+ |↓〉〈↑ |) ,

Yt(t) = Tr
(
Ŷtρ(t)

)
, Ŷt = 1√

2
(−i|T ↑〉〈T ↓|+ i|T ↓〉〈T ↑|) ,

Yh(t) = Tr
(
Ŷhρ(t)

)
, Ŷh = 1√

2
(−i|↑〉〈↓ |+ i|↓〉〈↑ |) .

(2.3)

In this way, the density matrix describing the system can be represented with variables

corresponding to the quantities of interest,

ρ(t) =



1−Nt(t)+Σh(t)
2

1
2
Xh(t)− i

2
Yh(t) 0 0

1
2
Xh(t) + i

2
Yh(t) 1−Nt(t)−Σh(t)

2
0 0

0 0 Nt(t)+Σt(t)
2

1
2
Xt(t)− i

2
Yt(t)

0 0 1
2
Xt(t) + i

2
Yt(t)

Nt(t)−Σt(t)
2


.

Next, the system is placed in a magnetic field B oriented at an angle θ with respect

to the growth axis (see Fig. 2.1). Throughout this work, the system will be described

in a reference frame rotating with the zero-field hole-trion transition frequency ω. The

Hamiltonian describing a single trapped hole-trion system in the magnetic field is thus

given by,

H0 = −1

2
µBBĝhσh −

1

2
gtµBB · σt, (2.4)
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2.1. Model of the investigated system

Figure 2.1: Quantization axes for the trion (left) and hole (right) spin.

where µB is the Bohr magneton, ĝh is the hole Landé tensor, gt is the Landé factor of

the trion (i.e., of the electron), which is assumed to be isotropic, and σh,σt are the

vectors of Pauli matrices corresponding to the hole and trion spin, respectively (the hole

is treated as a pseudo-spin-1/2 system). In order to define the Zeeman eigenstates for the

magnetically anisotropic hole, its quantization axis has to be found (see Fig. 2.1). The

hole Landé tensor is assumed to have no in-plane anisotropy and the magnetic field is set

in the xz plane

B = B(sin θ, 0, cos θ) = BêB, ĝh =


g⊥ 0 0

0 g⊥ 0

0 0 g‖

 .

Introducing the effective hole Landé factor g̃ = (g2
⊥ sin2 θ + g2

‖ cos2 θ)
1
2 and the angle φ

such that tanφ = (g⊥/g‖) tan θ, the hole spin quantization axis ê‖ can be defined by the

equation

êB ĝh = g̃

(
g⊥ sin θ

g̃
, 0,

g‖ cos θ

g̃

)
= g̃(sinφ, 0, cosφ) = g̃ê‖. (2.5)

This way, the Hamiltonian of the system can be rewritten in the more symmetric form

by introducing Pauli matrices coressponding to quantization axes σ‖h = sinφσxh + cosφσzh

and σ
‖
t = sin θσxh + cos θσzt ,

H0 = −1

2
µBB(g̃σ

‖
h + gtσ

‖
t ).

Note that in this form, the hole and trion parts of the Hamiltonian differ by the substi-

tution gt → g̃ and θ → φ. The last step is to rewrite the Hamiltonian in the basis of its

eigenstates, which are actually the eigenstates of the σ‖h and σ‖t operators. The eigenvalues

λ1,2 = ±1 and corresponding eigenstates are found by direct calculation in the form

|+〉 = cos φ
2
|↑〉+ sin φ

2
|↓〉, |−〉 = − sin φ

2
|↑〉+ cos φ

2
|↓〉,

|T+〉 = cos θ
2
|T ↑〉+ sin θ

2
|T ↓〉, |T−〉 = − sin θ

2
|T ↑〉+ cos θ

2
|T ↓〉.

11



2.2. Interaction with the pump pulse

Finally, introducing ωh = µBBg̃/~ and ωt = µBBgt/~, the Hamiltonian takes the form

H0 =
1

2
~ωh(|−〉〈−| − |+〉〈+|) +

1

2
~ωt(|T−〉〈T − | − |T+〉〈T + |). (2.6)

2.2 Interaction with the pump pulse

At moment t = 0−, just before the arrival of the pump pulse, the system is described by

the density matrix ρ0. The trion dynamical variables in this initial density matrix are

equal to 0, which is obvious for the TRKR experiment and justified in the case of RSA

experiment by the short lifetimes of trions (time between the pulses in RSA experiment

is long enough for carriers to recombine). Thus, at the arrival of the pump pulse, the

system is described by

ρ0 =



1+Σ
(0)
h

2
1
2
X

(0)
h − i

2
Y

(0)
h 0 0

1
2
X

(0)
h + i

2
Y

(0)
h

1−Σ
(0)
h

2
0 0

0 0 0 0

0 0 0 0


.

Initially, spins of the trapped holes are described by thermal equilibrium state, ρ0 = ρeq,

which results in the spin polarization along the hole spin quantization axis

p = 〈+|ρeq|+〉 − 〈−|ρeq|−〉 = tanh

(
~ωh

2kBT

)
. (2.7)

This is translated into the initial values for the dynamical variables of the holes,

N
(0)
h = N

(eq)
h = 1,

Σ
(0)
h = Σ

(eq)
h = p cosφ,

X
(0)
h = X

(eq)
h = p sinφ,

Y
(0)

h = Y
(eq)

h = 0.

(2.8)

Then, at t = 0, a circularly polarized pump pulse with frequency ωp = ω + ∆ (where ω

is the hole-trion transition frequency) arrives perpendicularly to the QW plane. To focus

attention the pulse is chosen to be circularly right polarized (σ+),

E(t) =
E0

2
η

(
t

τp

)
e−iωpt+iψ + c.c., E0 =

E0√
2


1

i

0

 ,

where η(t/τp) = exp[−(t/τp)2/2] is the Gaussian pulse shape of length τp. The electric

field is assumed to couple to the interband transitions via a dipole moment d. Then,

12



2.2. Interaction with the pump pulse

in the reference frame rotating with transition frequency ω and using the rotating wave

approximation, the interaction Hamiltonian takes the form

Hp =
1

2
f(t)ei∆t−iψ|↑〉〈T ↑|+ H.c., (2.9)

where f(t) = −d · E∗0(1 + r)η(t/τp) is the envelope function and r = (1 − n)/(1 + n) is

the reflection amplitude at the semiconductor-vacuum interface (n is the refractive index

of the capping layer).

Now, assuming that the pulse is much shorter than any relevant time scale of the

system dynamics, the change of the system state induced by the pump pulse can be

described as instantaneous. The transformation of the initial density matrix ρ0 into ρ1 is

decribed up to the second order in the pulse amplitude,

ρ1 = − i
~

∫ ∞
−∞

dt [Hp(t), ρ0]− 1

~2

∫ ∞
−∞

dt

∫ ∞
−∞

dt′ [Hp(t), [Hp(t′), ρ0]] . (2.10)

Note that, although for the zero detuning (i.e., ∆ = 0) the effect of the pump pulse can

be described in an analytical form (which is actually done for the probe pulse, where the

detuning is neglected, see Sec. 2.6), in the low power limit the second order perturbative

form is a very good approximation and has the advantage of describing also detuned

pulses. Now, the transformation induced by the pump pulse can be found by the direct

calculation of the commutators.

To shorten the notation and make the result more transparent, the density matrix

transformations (this and the following ones, in the next sections) will not be described

by writing down all the matrix elements after transformation. Instead, the transformation

formulas for the quantities of interest, i.e., Nh, Σh, Xh, Yh, Nt, Σt, Xt, Yt will be given. Out

of these eight variables four can be eliminated. First, recall that Nh = 1−Nt. Secondly,

note that during recombination trion variables vanish very quickly, but their initial values

(just after the pump pulse) govern the evolution of the hole variables. However, the pump

pulse does not transform trion coherences, so throughout the whole evolution they are

equal to 0. Finally, the trion population created by the pump pulse is optically oriented,

so that Nt = Σt. Thus, the vectors S0 and S1, composed of the important dynamical

variables and corresponding to density matrices ρ0 and ρ1, can be introduced,

S0 = S(eq) =


Σ

(0)
h

X
(0)
h

Y
(0)

h

Σ
(0)
t

 , S1 =


Σ

(1)
h

X
(1)
h

Y
(1)

h

Σ
(1)
t

 = ÂpS0 + bp.
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2.3. Initial fast decoherence

The pump pulse transformation matrix Âp and vector bp are given by

Âp =


1− 2|F (∆)|2 0 0 0

0 1− 2|F (∆)|2 −2M(∆) 0

0 2M(∆) 1− 2|F (∆)|2 0

2|F (∆)|2 0 0 0

 , (2.11)

bp =


−2|F (∆)|2

0

0

2|F (∆)|2

 , (2.12)

where

F (∆) =
1

4~

∫ ∞
−∞

f(t)e−i∆tdt =
f̂(∆)

4~
,

M(∆) =
1

16π~2
P
∫ ∞
−∞

f̂(ω)f̂(−ω)

ω + ∆
dω,

and f̂ is the Fourier transform of the envelope function. Note that for zero detuning,

M(0) = 0 and F (0) is straightforwardly connected to the area of the pump pulse.

2.3 Initial fast decoherence

For the off-resonant or high power pumping, some amount of excess energy is delivered to

the system. In this case, the microscopic kinetics of the system may be quite complex. For

example, for the off-resonant excitation, hole spin flips during relaxation to low-energy

states are possible, which is clearly beyond the four-level model introduced here. However,

the essential effect is bringing the hole spin polarization toward equilibrium and dephasing

of the hole spin coherence. Both these effects are included in the model in terms of a fast

partial decoherence (relaxation and dephasing) of the hole spins, with the assumption that

it takes place on time scales much shorter than the subsequent spin dynamics and can

thus be modeled as instantaneous. Taking into account the fast character of the process

(comparing to the Larmor precession), the effects of occupation relaxation and additional

pure dephasing are associated with the system symmetry axis (coinciding with the axis of

optical orientation). Therefore, the matrix elements of density matrix ρ2, describing the

system after the fast decoherence, are connected with the matrix elements of ρ1, with the

use of factors e−u and e−w (responsible for the occupation relaxation and pure dephasing,
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2.4. Precession, decoherence and recombination

respectively),

〈↓ |ρ2|↑〉 = 〈↓ |ρ1|↑〉e−u/2−w,
〈↑ |ρ2|↓〉 = 〈↑ |ρ1|↓〉e−u/2−w,
〈↑ |ρ2|↑〉 = 1

2
〈↑ |ρ1|↑〉 (1 + e−u) + 1

2
〈↓ |ρ1|↓〉 (1− e−u) ,

〈↓ |ρ2|↓〉 = 1
2
〈↓ |ρ1|↓〉 (1− e−u) + 1

2
〈↓ |ρ1|↓〉 (1 + e−u) .

(2.13)

Again, this process can be described in terms of a transformation of the already introduced

vectors S1 and S2, representing the density matrices ρ1 and ρ2, respectively,

S2 =


Σ

(2)
h

X
(2)
h

Y
(2)

h

Σ
(2)
t

 = Âfd

(
S1 − S(eq)

)
+ S(eq),

Âfd =


e−u 0 0 0

0 e−u/2−w 0 0

0 0 e−u/2−w 0

0 0 0 1

 , (2.14)

where the S(eq) terms assure that the fast decoherence brings the dynamical variables to

the equilibrium, not 0, values.

2.4 Precession, decoherence and recombination

The next step is to model the actual spin dynamics (i.e., Larmor precession, recombination

and spin decoherence) in between the pump and probe pulses. In order to achieve this,

a Markovian master equation (again, in the rotating frame with respect to the interband

transition energy, but in the Schrödinger picture with respect to the spin dynamics) is

used [see Eq. (A.12)],

ρ̇ = − i
~

[H0, ρ] + Lh[ρ] + Lt[ρ] + Lr[ρ], (2.15)

where H0 is given by Eq. (2.6) and, due to the description in Markov limit (which is

reasonable in view of the relatively long time scales involved), the dissipative dynamics

(decoherence and recombination) is described by the universal Lindblad superoperator

L = Lh +Lt +Lr. In the Appendix, the general Lindblad equation for arbitrary dimension

of the system Hilbert space is derived. Here, these results are used to find the expressions

corresponding to the dissipative dynamics of the considered system, i.e., for the hole

dissipator Lh, the trion dissipator Lt and the spontaneous emission generator Lr.

First, the description of the hole and trion dissipators will be given. Apart from the

assumptions given in the Appendix (i.e., Markovian approximation), it is also assumed
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2.4. Precession, decoherence and recombination

that the reservoirs coupled to electron (trion) and hole spins are uncorrelated. Thus, the

problem splits into two independent, two-level systems coupled to the environment. The

description of the dissipative dynamics of the two systems will be therefore identical, so

only the hole case will be discussed and the trion one can be obtained after substitutions:

φ→ θ, ωh → ωt, |↑〉 → |T ↑〉 and |↓〉 → |T ↓〉.
Following the derivation from the Appendix (here the double index of the σ operators is

omitted, since for a two-level system only 3 operators are required), the spin-environment

interaction Hamiltonian can be written as [see Eq. (A.6)]

Hint =
∑
i

σ
(h)
i R

(h)
i = σ(h)

x R(h)
x + σ(h)

y R(h)
y + σ(h)

z R(h)
z , (2.16)

where σ
(h)
i are the Pauli matrices and R

(h)
i are certain operators on the Hilbert space

of the reservoir. However, to use the open quantum system formalism described in the

Appendix, the operators acting on the system (i.e., the Pauli matrices) must be expressed

in the energy eigenstates basis (with respect to H0). Therefore, new coordinate system

(ê⊥, êy, ê‖) is defined, where ê‖ = (sinφ, 0, cosφ) is the already introduced unit vector

parallel to the quantization axis, ê⊥ = (cosφ, 0,− sinφ) is orthogonal to the quantization

axis, and êy = (0, 1, 0) has direction along y axis. Now, σ(h)
x and σ

(h)
z can be represented

in terms of σ(h)
⊥ = ê⊥ · σ(h) and σ

(h)
0 = ê‖ · σ(h),

σ(h)
x = σ

(h)
0 sinφ+ σ

(h)
⊥ cosφ, σ(h)

y , σ(h)
z = σ

(h)
0 cosφ− σ(h)

⊥ sinφ.

The next step is to define rising and lowering operators with respect to quantization axis

ê‖,

σ
(h)
+ =

1

2
(σ

(h)
⊥ + iσ(h)

y ) = |+〉〈−|,

σ
(h)
− =

1

2
(σ

(h)
⊥ − iσ

(h)
y ) = |−〉〈+|.

The spin-environment interaction Hamiltonian may now be written in the useful form

Hint = σ
(h)
+ R

(h)
− + σ

(h)
− R

(h)
+ + σ

(h)
0 R

(h)
0 , (2.17)

where the new environment operators R(h)
− , R(h)

+ and R
(h)
0 are definied by

R
(h)
− = R

(h)
x cosφ− iR(h)

y −R(h)
z sinφ,

R
(h)
+ = R

(h)
x cosφ+ iR

(h)
y −R(h)

z sinφ =
(
R

(h)
−

)†
,

R
(h)
0 = R

(h)
x sinφ+R

(h)
z cosφ.

(2.18)

One may have the wrong impression, that the interaction Hamiltonian could be written

in the form from Eq. (2.17) from the very beginning, with some undefinied environment
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2.4. Precession, decoherence and recombination

operators R(h)
− , R(h)

+ and R
(h)
0 . However, assuming that the spectral densities of the envi-

ronment operators have the symmetry of the investigated structure, a big simplification

is obtained (as shown later in this section). Therefore it is good to express R(h)
− , R(h)

+ and

R
(h)
0 as functions of operators R(h)

x , R(h)
y and R(h)

z , connected with the structure orientation

[Eq. (2.18)]. Having properly defined the interaction Hamiltonian, the general form of

the dissipator from the Appendix [see Eq. (A.13)] can now be used to obtain the hole

dissipator of investigated system,

Lh[ρ] = −π
∑

lj

[
R

(h)
lj (ωj)

(
σ

(h)
l σ

(h)
j ρ− σ(h)

j ρσ
(h)
l

)
+R

(h)
lj (−ωl)

(
ρσ

(h)
l σ

(h)
j − σ

(h)
j ρσ

(h)
l

)]
,

(2.19)

where l, j = ±, 0, ω0 = 0, ω+ = −ω− = ωh and the spectral densities for the hole reservoir

are defined as [see Eq. (A.9)]

R
(h)
lj (ω) =

1

2π~2

∫
dteiωt〈R(h)

l (t)R
(h)
j 〉, l, j = ±, 0,

with the explicit time dependency denoting the operator in the interaction picture with

respect to the environment Hamiltonian. Additional simplification of spectral densities

can be obtained by employing the system C4v symmetry and setting R
(h)
αβ (ω) = 0 for

α, β = x, y, z, α 6= β and R
(h)
yy (ω) = R

(h)
xx (ω). Then, they are expressed by

R
(h)
00 (ω) = R

(h)
xx (ω) sin2 φ+R

(h)
zz (ω) cos2 φ,

R
(h)
++(ω) = R

(h)
−−(ω) =

(
R

(h)
zz (ω)−R(h)

xx (ω)
)

sin2 φ,

R
(h)
+−(ω) = R

(h)
−+(ω) = R

(h)
xx (ω) (1 + cos2 φ) +R

(h)
zz (ω) sin2 φ,

R
(h)
0+(ω) = R

(h)
+0(ω) = R

(h)
0−(ω) = R

(h)
−0(ω) =

(
R

(h)
xx (ω)−R(h)

zz (ω)
)

sinφ cosφ.

As mentioned before, trion dissipator Lt can be obtained from Eq. (2.19) after apprioprate

substitutions.

The trion radiative decay is accounted for also by the Lindblad superoperator

Lr[ρ] = γ1

[
σ

(↑)
− ρσ

(↑)
+ −

1

2

{
σ

(↑)
+ σ

(↑)
− , ρ

}
+

+ σ
(↓)
− ρσ

(↓)
+ −

1

2

{
σ

(↓)
+ σ

(↓)
+ , ρ

}
+

]
+

1

2
γ0

[
σ0ρσ0 −

1

2

{
σ2

0, ρ
}

+

]
, (2.20)

where γ1 is the radiative decay rate, γ0 is the additional pure dephasing rate, and the

transition operators are

σ
(↑)
+ =

[
σ

(↑)
−

]†
= |↑〉〈T ↑|,

σ
(↓)
+ =

[
σ

(↓)
−

]†
= |↓〉〈T ↓|,

σ0 = |T ↑〉〈T ↑|+ |T ↓〉〈T ↓| − |↑〉〈↑ | − |↓〉〈↓ |.

(2.21)
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2.4. Precession, decoherence and recombination

In order to describe the spin dynamics of the system one has to solve the Eq. (2.15)

with the dissipators given by Eqs. (2.19) and (2.20) for the initial density matrix ρ2,

described by Eqs. (2.10) and (2.13). However, it is much easier and more transparent

to describe the evolution again in terms of the dynamical variables, corresponding to

quantities of interest: Σh, Xh, Yh, Nt, Σt, with the initial condition given by components

of S2 (remembering that initially trion population is completely polarized, i.e., the initial

conditions for Nt and Σt are the same and equal to Σ
(2)
t ). Variables Nh, Xt, Yt can be

omitted, because the former one is a simple function of Nt [Eq. (2.1)] and the latter ones

are initially equal to 0 and do not evolve. Evolution equations for the dynamical variables

are obtained with the use of the operators defined by Eqs. (2.1)-(2.3) and the density

matrix evolution equation,

˙̂
A = Tr

(
Âρ̇(t)

)
, Â = Σ̂h, X̂h, Ŷh, N̂t, Σ̂t.

Before writing down the evolution equations explicitly the crucial approximation for the

trion spin dynamics is made, which simplifies the equation for the trion polarization.

Namely, it is assumed that the radiative decay rate γ1 is much larger than any trion

decoherence rates, therefore the trion dissipative dynamics can be described, with a good

approximation, as governed only by the recombination processes. With this assumption,

the obtained differential equations for trion dynamical variables are easily solved and their

solutions are given by

Nt(t) = Nt(0)e−γ1t,

Σt(t) = Σt(0)e−γ1t
[
cos2 θ + sin2 θ cosωtt

]
. (2.22)

For the hole variables, the dynamics is governed by the following set of differential equa-

tions

˙̃
Σh = −

[
3 + cos 2φ

2
κx +

1− cos 2φ

2
κx0

]
Σ̃h −

(
κx − κx0

2

)
sin 2φX̃h

−ωh sinφYh − 2κ′x cosφNt + γ1Σt, (2.23)

˙̃
Xh = −κz − κz0

2
sin 2φΣ̃h −

[
1− cos 2φ

2
κz +

1 + cos 2φ

2
κz0 + κx

]
X̃h

+ωh cosφYh + (κ′x − κ′z) sinφNt, (2.24)

Ẏh = ωh sinφΣ̃h − ωh cosφX̃h

−
[

1 + cos 2φ

2
(κz0 + κx) +

1− cos 2φ

2
(κx0 + κz)

]
Yh, (2.25)

where new hole variables Σ̃h = Σh−Σ
(eq)
h and X̃h = Xh−X(eq)

h with subtracted equilibrium
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2.5. Repetitive evolution in the RSA experiment

values [given by Eq. (2.8)] are used and the decoherence rates are defined as

κx = 2π [Rxx(ωh) +Rxx(−ωh)] , κz = 2π [Rzz(ωh) +Rzz(−ωh)] ,

κ′x = 2π [Rxx(ωh)−Rxx(−ωh)] , κ′z = 2π [Rzz(ωh)−Rzz(−ωh)] ,

κx0 = 4πRxx(0), κz0 = 4πRzz(0). (2.26)

Note that due to the lock-in technique used in the experiment, only the Kerr rotation

change induced by the pump beam is measured, therefore what is experimentally accesible

is Σ̃h, not Σh. The set of differential equations 2.23-2.25 can be solved by inserting the

solutions for the trion variables [Eq. (2.22)] and using the Laplace transform method. In

general, the Lindblad evolution can be again written as the transformation of the vector

S2 into vector S3(t), corresponding to density matrix ρ(t),

S3(t) =


Σh(t)

Xh(t)

Yh(t)

Σt(t)

 = ÂL(t)S2 + bL(t). (2.27)

2.5 Repetitive evolution in the RSA experiment

In the RSA experiment, the system undergoes the three-step evolution described in secs.

2.2-2.4 repetetively, with the time period trep given by the repetition rate of the pumping

laser (see Fig. 2.2). In this case, the spin polarization surviving between subsequent

laser repetitions is essential. Therefore, in order to find the resonantly amplified spin

polarization just before the arrival of the pump pulse (which corresponds to the RSA

signal), the fixed point of the three-step transformation (pump pulse, fast decoherence,

and Lindblad evolution during the repetition interval trep) is found:

AL(trep)
(
Afd

(
ApS +Bp − S(eq)

)
+ S(eq)

)
+ bL(trep) = S. (2.28)

As the measurement accounts only for the Kerr rotation change induced by the pump

beam, in order to model the experimentally obtained signal the equilibrium values of

the dynamical variables must be subtracted at the end, i.e., to describe the RSA signal

S − S(eq) vector is used, not just S. To simplify the obtained formula for the stationary

vector S − S(eq) it is assumed that the hole spin dephasing rates are small compared to

the trion recombination rate, which is justified by the condition of long SDT in the RSA

measurements. Additionaly, in order to simulate the response from an inhomogeneous

ensemble of hole spins, the obtained result is averaged according to a Gaussian distribution

of hole g-factors with the standard deviation ∆g.

19



2.6. Interaction with the probe pulse

Figure 2.2: Repetitive evolution the system undergoes with the period trep in the RSA ex-

periment: pumping, fast hole decoherence, and actual evolution (precession, decoherence,

and recombination).

2.6 Interaction with the probe pulse

After the arrival of the pump pulse, the system evolves for the time τ according to the

description given in sec. 2.4. Then, the linearly polarized probe pulse arrives at the

sample surface. After reflection, due to the magnetooptical Kerr effect, its polarization

plane is rotated, and the rotation angle yields the information about the spin polarization

present in the sample at the arrival of the probe pulse. In this section, the microscopic

origin of this effect will be presented, i.e. the relation between the measured TRKR signal

and the elements of the density matrix, at the moment when the probe pulse arrives, will

be established [16].

To focus attention, the probe pulse is chosen to be linearly polarized along the x axis,

E(t) =
E0

2
η

(
t− τ
τp

)
e−iωp(t−τ)+iψ + c.c., E0 = E0


1

0

0

 ,

where η[(t − τ)/(τp)] = exp[−[(t − τ)/τp]2/2] is the Gaussian pulse shape of length τp,

delayed by τ in relation to the pump pulse. The electric field is assumed to couple

to the interband transitions via a dipole moment d, similarly as the pump pulse, but

now the influence of the detuning is neglected. Then, the relevant Hamiltonian (in the

reference frame rotating with transition frequency ω and using the rotating wave and

dipole approximations) is given by

Hprobe =
1

2
√

2
f(t− τ)e−iψ (|↑〉〈T ↑|+ |↓〉〈T ↓|) + H.c., (2.29)

where f(t− τ) = −d · E∗0(1 + r)η[(t− τ)/τp] is the envelope function.

The total field, coming from the probe pulse after reflection from the sample, can be

projected onto the two axes x, y, oriented at 45◦ with respect to the original polarization
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2.6. Interaction with the probe pulse

of the probe beam. Then, the measured rotation of the polarization axis is given by the

difference of intensity between the corresponding two components of the field,

∆I =
1

µ0c

[
〈E2

y(t)〉 − 〈E2
x(t)〉

]
=

1

µ0c
Im
(
E+E

∗
−
)
, (2.30)

where E+ and E− are the amplitudes of the circularly polarized components (right- and

left- polarized, respectively) of the total field and time averaging over the period of the

electromagnetic field is denoted by 〈·〉. The total field originates from two sources: the

reflection at the surface of the capping layer, ER (which will be treated on the macroscopic

level), and the field emitted by the nanostructure, ES. Taking this into account, the

circularly polarized components of the total field can be written as:

E± = ER± + ES±. (2.31)

Since the reflected component of the linearly polarized field simply follows the pulse

envelope the amplitudes of its σ+ and σ− components at the sample surface are equal:

ER±(t) = ER(t) =
1√
2
rE0η

(
t− τ
τp

)
e−iψ. (2.32)

The field emitted by the nanostructure, ES, originates from the interband polarization.

The dipole moment, coming from every hole-trion superposition, can be decomposed into

the circularly right- and left-polarized components,

π+ = d〈T ↑|ρ(t)|↑〉e−iωt + c.c., (2.33)

π− = d〈T ↓|ρ(t)|↓〉e−iωt + c.c., (2.34)

which results in the polarization currents

J+ = ν
∂π+

∂t
= −iνωd〈T ↑|ρ(t)|↑〉e−iωt + c.c., (2.35)

J− = ν
∂π−
∂t

= −iνωd〈T ↓|ρ(t)|↓〉e−iωt + c.c., (2.36)

where ν is the area density of trapped holes. Therefore, the the radiation emitted from

the structure, at the sample surface, is given by(
ES+(t)

ES−(t)

)
=
i

2
µ0cνdω

(
〈T ↑|ρ(t)|↑〉
〈T ↓|ρ(t)|↓〉

)
e−iϕ, (2.37)

where the phase shift (with respect to the field reflected at the surface, ER), ϕ = 2Dωn/c,

comes from the propagation through the capping layer of width D.

Now, one can obtain the expression for the measured signal by substituting Eqs. (2.32)

and (2.37) into Eq. (2.31) and then into Eq. (2.30). After retaining only terms of the

first order in the nanostructure response, ES±, the TRKR signal is given by

∆I(t) =
1

2
νωdRe

[
E∗R(t)〈T ↑|ρ(t)|↑〉e−iϕ − ER(t)〈T ↓|ρ(t)|↓〉∗eiϕ

]
. (2.38)
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The above equation describes the experimentally measured signal in terms of the quantum

state of the system. Therefore, the next step is to find out how the probe pulse affects

the system state, i.e., how the measured signal is connected with the state just before the

arrival of the probe pulse ρ(τ−) (τ− denotes the time instant just before the arrival of the

probe pulse).

In order to do this in an analytical way, the following assumptions are made. First,

the probe pulse duration is assumed to be shorter than any relevant time scale of the

system dynamics. Secondly, the dephasing times of interband coherences are assumed to

be longer than the pulse duration. Then, one can completely neglect the system evolution

during the pulse. Using the introduced Hamiltonian [Eq. (2.29)] and taking into account

that the state of the system ρ(t) is prepared by the probe pulse from the state ρ(τ−), the

system density matrix is transformed according to:

ρ(t) = W (t)ρ(τ−)W †(t),

where W (t) is an unitary evolution operator given by

W (t) = cos
Φ(t)

2
I− i sin

Φ(t)

2

[
(|↑〉〈T ↑|+ |↓〉〈T ↓|) eiψ + H.c.

]
, (2.39)

and

Φ(t) =
1√
2~

∫ t

−∞
dsf

(
s− τ
τp

)
. (2.40)

Having the evolution operator, it is straightforward to find the interband matrix elements

(for σ =↑, ↓):

〈Tσ|ρ(t)|σ〉 = cos2 Φ(t)

2
〈Tσ|ρ(τ−)|σ〉+ sin2 Φ(t)

2
〈σ|ρ(τ−)|Tσ〉e−2iψ

+
i

2
sin Φ(t)

[
〈Tσ|ρ(τ−)|Tσ〉 − 〈σ|ρ(τ−)|σ〉

]
e−iψ. (2.41)

Finally, assuming that the interband dephasing time is much shorter than the delay time

τ between the pump and probe pulse, one can neglect the interband matrix elements at

time τ− in Eq. (2.41). Then, substituting it into Eq. (2.38), with the use of Eq. (2.32),

one obtains the expression for the Kerr signal:

∆I =
1

4
√

2
rEη

(
t− τ
τp

)
νωd sinϕ sin Φ(t)

[
Σt(τ

−)− Σh(τ−)
]
. (2.42)

Ignoring the factors that cannot be directly measured experimentally and integrating over

time, in order to obtain integrated detection signal, one arrives at the TRKR signal

TRKR ∼ Σt(τ
−)− Σh(τ−). (2.43)

This way, the TRKR measurement gives access to the evolution of the spin polarizations

in the system.
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Chapter 3

Microscopic modelling of

decoherence

This chapter is devoted to the studies of microscopic origin of the hole spin decoherence

in the investigated system, i.e. the p-doped quantum well. The usual explanation for the

decrease of spin lifetimes with increasing temperature is that the localized holes become

free carriers due to the thermal release from the localization centres and, because of

the spin-orbit coupling, very efficient spin decoherence mechanisms start working, e.g.,

resulting from the D’yakonov-Perel’ mechanism [18]. Therefore, spin polarization observed

experimentally (Kerr signal) originates only from the localized states and should vanish

when all the carriers become thermally released. In this chapter, it is shown that it may

not be the decrease of occupation of localized states, but the spin exchanging interaction

between the localized and released (free) states that is mainly responsible for the decrease

of the spin life-times. First, the model of localized holes is extended to account for the

final depth of localization potentials by introducing the thermally released states. Next,

the model of the interaction between localized and free states is presented. Finally, the

Coulomb interaction between the thermally relased and localized states is studied and

the interaction induced spin-flip probability of the localized hole state is calculated in the

Fermi’s Golden Rule approach.

3.1 Extended model with thermally released holes

The considered system consists of holes confinied in a quasi-two-dimensional structure,

i.e., it is assumed that the energies (temperatures) involved are small enough to restrict

the description to the lowest out-of-plane QW energy level. As mentioned in the former

chapter, due to the QW width fluctuations a number of localization centres exist in the

structure. Therefore, there are two kinds of available states for the holes: localized and
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3.1. Extended model with thermally released holes

free ones. The considered particles (holes) are fermions, therefore they obey Fermi-Dirac

statistics,

N =
∑
i

1

exp(β(Ei − µ)) + 1
, (3.1)

where N is the number of particles in the system, µ is the chemical potential, β = 1/kBT

is the inverse temperature and the index i goes over all the energy levels Ei in the system.

To make the explicit distinction between two kinds of available states, Eq. (3.1) may be

rewritten in the form

N =
∑
α

1

exp(β(Eα − µ)) + 1
+
∑
p

1

exp(β( p
2

2m
− µ)) + 1

, (3.2)

where the summation over α corresponds to the set of localized states and the energy of

the released (free) states has been written explicitly, i.e., dependent on the momentum p.

Due to the random character of the localization centres (fluctuations of the QW width),

their energies are assumed to be normally distributed around E0 < 0 with the standard

deviation σE. The next step is to change the summation into 2-dimensional integration,∑
p

→ 2S

(2π~)2

∫
d2p→ Sm

π~2

∫
dE,

∑
α

→ NQD√
2πσE

∫
exp

(
−(E − E0)2

2σ2
E

)
dE,

where S is the surface of the QW, NQD is the number of localization centers, m is the hole

mass and the factor 2 appears before the first integral because of the spin summation.

One then arrives at the expression for the concentration,

n =
nQD√
2πσE

∫ ∞
−∞

dE
exp(− (E−E0)2

2σ2
E

)

exp(β(E − µ) + 1
+

m

βπ~2
ln(1 + eβµ), (3.3)

where nQD is the concentration of the localization centers. Eq. (3.3) can be solved numeri-

cally to obtain the chemical potential µ for different concentrations n, nQD and localization

centres distribution parameters E0, σE. Using the calculated chemical potential one can

then find the distribution function for the free holes

f(E) =
(
eβ(E−µ) + 1

)−1
, (3.4)

which will be used in the next section for the calculations of the total spin-exchanging

scattering probabilities between free and localized states.

It is also useful to introduce the parameter x = nQD/n, which describes how many

localization centres there are on average per one hole. The schematic graphs in Fig. 3.1

show 4 possible situations for the value of chemical potential, depending on the concen-

tration of holes for T = 0. Due to the fact that experimentally all the holes are observed
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3.2. Interaction between free and localized hole states

Figure 3.1: The plots schematically show densities of states (black lines) and the occupied

states (blue fill) in four regions of the chemical potential values and the corresponding

values of concentration at zero temperature.

to be localized in low temperatures, x ≥ 1 (there is at least the same number of localiza-

tion centres as carriers) and it is the bottom left graph in Fig. 3.1 that represents real

situation.

3.2 Interaction between free and localized hole states

3.2.1 Model

Having the distribution function for the free holes given by Eq. (3.4) [with the chemi-

cal potential obtained from numerical solution of Eq. (3.3)], one can now calculate the

interaction between the free states and the localized ones. It is assumed that the concen-

tration of localization centres is small enough, i.e., the average distance between them is

big enough, to neglect the interaction between localized states. Therefore, only a single

impurity (situated at the origin of the coordinate system) is considered, with a single

hole localized on it (more than one hole is not favourable due to the Coulomb repulsion).

For the hole on the impurity, normalized Gaussian shape (with anisotropic out-of-plane

component) of the ground state wavefunction Φ(r) is assumed,

Φ(r) =
1√
πσ

e−
ρ2

2σ2 · 1

(
√
πσz)

1
2

e
− z2

2σ2z , (3.5)
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3.2. Interaction between free and localized hole states

where σ and σz are the parameters describing the in-plane and out-of-plane Gaussian

width, respectively (which will be estimated later), and the cylindrical coordinates ρ =√
x2 + y2 and z are used (the system has cylindrical symmetry). Two-dimensional free

hole gas is described by the product of the free hole wavefunctions (2D plane waves with

the normalization factor taken from the assumption of finite surface S and wave vector:

k‖ = k = [kx, ky, 0]) with the Gaussian envelope along ẑ (out of the QW plane),

Ψk(r) =
1√
S
eik·ρ · 1

(
√
πσz)

1
2

e
− z2

2σ2z . (3.6)

Each state (Φ(r), Ψk(r)) has also a spin component: ↑ or ↓.
As the localization centres originate from completely random structural factors (QW

width fluctuations) it is hard to determine the widths of the Gaussian wavefunction σ and

σz (they depend on the depth and size of the unkown localization potential). However, one

can estimate the approximate value of σ and σz in the following way. First, the assumption

is made that the confining potential of the QW is an infinite (square) quantum well along z

direction. This approach is justified, because for a thin QW (4nm wide, in the experiments

performed by the Regensburg group) the confinment should play a dominant role. What

is more, the same z dependence of the wavefunctions of localized and free holes (the same

σz) was already assumed, which suggests that localization centres only slightly influence

the potential along the z direction. Now, the real ground state in an infinite quantum

well has the cosine shape, however it can approximated with a Gaussian. This is done,

by comparison of the energy of the ground state in the infinite well of width a:

Ez∞ =
~2π2

8ma2
,

with the energy of a free Gaussian wavefunction (the kinetic part):

Ez =
~2

4mσ2
z

,

which gives:

σz =

√
2

π
a. (3.7)

Next, it is known that at small temperatures all holes are trapped, so nQD ≥ n. As

the localized hole-localized hole interaction was neglected, the mean distance between

localization centres, l = (nQD)−
1
2 , should fulfill the inequality is l > 4σ (the factor 4

was used, because for the separation of two Gaussian wavefunctions by 4σ the overlap is

smaller than 2.25%). Therefore, σ < 1/(4
√
n). On the other hand, it is expected that

σ > σz, because σz is mainly determined by the confinment. Alltogether, the following

approximate constraints are obtained for σ,
√

2

π
a < σ <

1

4
√
n
. (3.8)
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3.2. Interaction between free and localized hole states

The interaction between free and localized states has a twofold nature. First, the free

carrier can scatter on the impurity and exchange the spin. Then, the spin information

transfered from the localized to the free carrier is quickly lost (due to the very short spin

lifetimes of free carriers), which effectively results in decrease of the spin polarization in

the sample. On the other hand, the Coulomb potential of the localized state influences

the density of states of free carriers. This results in two phenomena that can decrease

the scattering probability. First, due to the repulsive potential the probability of finding

a free carrier should decrease in the neighbourhood of the localized hole. Secondly, the

localized becomes effectively screened. Here, the approximation that includes only the

first effect of the interaction, i.e. spin-exchanging scattering, will be discussed.

3.2.2 Spin-flip probabilities

The transition probability from the initial state |i〉, with a localized spin-up hole and a

free spin-down hole with wave vector k′, to any of the allowed states with a localized spin-

down hole |f〉 (due to the conservation of spin the final free hole state must be spin-up)

will be calculated. All the calculations will be performed in the absence of magnetic field

(no favoured spin axes) so the transition probabilities up-down (↑ to ↓) and down-up (↓
to ↑) for the localized state should be the same (the up-down transition was chosen only

to focus the attention). The initial |i〉 and final |f〉 states can be described in the second

quantization formalism

|i〉 = a†k′↓a
†
Φ↑|0〉,

|f〉 = a†k↑a
†
Φ↓|0〉, (3.9)

where aΦ, ak are the annihilation operators for the localized and free states (described by

wavefunctions Φ(r) and Ψk(r), respectively), the projection of the spin on the structure

axis (perpendicular to the QW plane) is described by ↑, ↓ and |0〉 denotes the vacuum

state. Using Fermi’s Golden Rule, the transition probability from the initial state |i〉 to

any of the allowed states |f〉 (conservation of spin and energy is taken into account) can

be written as

P(k′↓,Φ↑)→(k↑,Φ↓) =
2π

~
∑
k

|〈0|aΦ↓ak↑|V |a†k′↓a
†
Φ↑|0〉|

2δ(Ek − Ek′), (3.10)

where V is the Coulomb interaction operator V = 1
2

∑
ijkl Vijkla

†
ia
†
jalak and the indices

i, j, k, l go over all possible states. The only non-vanishing parts of Eq. (3.10) correspond-

ing to the situation when the spin of the trapped hole is flipped, see Fig. 3.2, are the

exchange terms

V1 = VΦkΦk′a
†
Φ↓a

†
k↑aΦ↑ak′↓,

V2 = VkΦk′Φa
†
k↑a
†
Φ↓ak′↓aΦ↑.
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3.2. Interaction between free and localized hole states

Figure 3.2: Schematic representation of the interaction-induced spin-flip of the localized

hole.

The matrix elements are equal, VΦkΦk′ = VkΦk′Φ, therefore Eq. (3.10) simplifies and the

transition probability is given by

P(k′↓,Φ↑)→(k↑,Φ↓) =
2π

~
∑
k

|VΦkΦk′|2δ(Ek − Ek′). (3.11)

The next step is to evaluate the matrix element for the Coulomb interaction:

VΦkΦk′ =
e2

4πεε0

∫
d3r

∫
d3r′Φ∗(r)Ψ∗k(r′)

1

|r − r′|
Φ(r′)Ψk′(r), (3.12)

where e is the elementary charge, ε0 is the vacuum permittivity, ε is the relative permit-

tivity of the medium (here GaAs). In order to calculate VΦkΦk′ several transformations

are applied. First, the Fourier transform of Coulomb potential is used to represent the

interaction:
1

|r − r′|
=

4π

(2π)3

∫
d3q

eiq·(r−r
′)

q2
. (3.13)

Also the fact that the Fourier transform of a Gaussian is another Gaussian is employed:

F{Φ(x)} =

∫
dx

1√
2πσ

e−
x2

2σ2 e−iqx = e−
q2σ2

2 .

Now, denoting A = e2/(8εε0Sπ
5σ2σ2

z), inserting the explicit form of the wavefunctions

[given by Eqs. (3.5) and (3.6)] and making a distinction between in-plane and out-of-

plane component of q, q‖ = q = [qx, qy, 0] and qz, the first step of the calculation can be
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3.2. Interaction between free and localized hole states

performed,

VΦkΦk′ = A

∫
d3q

q2 + q2
z

∫
d2ρe−

ρ2

2σ2 e−i(−k
′−q)·ρ

∫
d2ρ′e−

ρ′2

2σ2 e−i(k+q)·ρ′

×
∫
dze

− z
2

σ2z e−i(−qzz)
∫
dz′e

− z
′2

σ2z e−iqzz
′

= 4π3σ4σ2
zAe

−σ
2

2
(k2+k′2)

∫
d3q

q2 + q2
z

e−σ
2q2e−

σ2z
2
q2ze−σ

2q·(k+k′)

= B

∫
d3q

q2 + q2
z

e−σ
2q2e−

σ2z
2
q2ze−σ

2q·(k+k′),

where B = 4π3σ4σ2
zA exp(−σ2(k2 + k′2)/2). The next step is to introduce the vector

K = k + k′ and use cylindrical coordinates with the x axis along K (so that the angle

between between q and K is the azimuthal angle φ),

VΦkΦk′ = B

∫ 2π

0

dφ

∫ ∞
0

dq · qe−σ2q2e−σ
2qK cosφ

∫ ∞
0

dqz
q2 + q2

z

e−
σ2z
2
q2z .

The last integral (along qz) can be replaced by∫ ∞
0

dqz
q2 + q2

z

e−
σ2z
2
q2z =

1√
π

e
σ2z
2
q2

q

∫ ∞
σz√
2
q

dte−t
2

=
1

2

e
σ2z
2
q2

q
− 1√

π

e
σ2z
2
q2

q

∫ σz√
2
q

0

dte−t
2

,

and the expression for the matrix element takes the form of

VΦkΦk′ =
B

2
J1 −

B√
π
J2,

where the integrals J1 and J2 are given by

J1 =

∫ 2π

0

dφ

∫ ∞
0

dqe−σ
2q2e

σ2z
2
q2e−σ

2qK cosφ,

J2 =

∫ 2π

0

dφ

∫ ∞
0

dqe−σ
2q2e

σ2z
2
q2e−σ

2qK cosφ

∫ σz√
2
q

0

dte−t
2

.

First, the integral J1 will be calculated. Using the definition of the modified Bessel

function of the first kind I0(x) = 1
π

∫ π
0
dφex cosφ, the angular part of J1 can be transformed

to ∫ 2π

0

dφe−σ
2qK cosφ = 2πI0(σ2Kq).

Now, changing the integration variable to p = σ2Kq, one arrives at the formula for J1

given by:

J1 = 2π

∫ ∞
0

dp

σ2K
e−

σ2−σ
2
z
2

σ4K2 p2I0(p),

which can be straightforwardly calculated with the use of the property of the I0 function,∫ ∞
0

dxe−ax
2

I0(x) =

√
π

2
√
a
e

1
8a I0

(
1

8a

)
,
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3.2. Interaction between free and localized hole states

and give the the analytical expression for the integral J1,

J1 =
π

3
2√

σ2 − σ2
z

2

exp

(
σ4K2

8(σ2 − σ2
z

2
)

)
I0

(
σ4K2

8(σ2 − σ2
z

2
)

)
. (3.14)

Now, the integral J2 will be calculated. The angular part can be transformed the same

way as for J1 and, by introducing new integration variables t = σzqw/
√

2 and p = σ2Kq,

the expression for J2 takes the form

J2 =
2πσz√
2σ4K2

∫ 1

0

dw

∫ ∞
0

dpp exp

(
−
σ2 − σ2

z

2
+ σ2

z

2
w2

σ4K2
p2

)
I0(p).

Focusing on the integral over p and denoting C = (σ2 − σ2
z

2
+ σ2

z

2
w2)/(σ4K2) one can

integrate by parts and obtain∫ ∞
0

dppe−Cp
2

I0(p) =
1

2C

(
1 +

∫ ∞
0

dpe−Cp
2

I1(p)

)
.

Using another equality for the Bessel function,∫ ∞
0

dpI1(p)e−Cp
2

= e
1
4C − 1

the integral over p can be calculated. Finally, inserting it into the expression for J2 and

writing C explicitly, one obtains

J2 =
πσz√

2

∫ 1

0

dw
1

σ2 − σ2
z

2
+ σ2

z

2
w2

exp

(
σ4K2

4(σ2 − σ2
z

2
+ σ2

z

2
w2)

)
. (3.15)

The matrix element VΦkΦk′ can be thus explicitly written as

VΦkΦk′ =
e2σ2

2π2εε0S
e−

σ2

2
(k2+k′2)

(
J1

2
− J2√

π

)
, (3.16)

with J1 and J2 given by Eqs. (3.14) and (3.15), respectively. In order to simplify the

notation in further calculation the following notation, which indicates explicit dependence

on k and k′, will be used:

VΦkΦk′ = V
(
k2 + k′

2
, (k + k′)

2
)
.

Having calculated the matrix element, one can now calculate the expression for the

transition probability, given by Eq. (3.11). First, the summation is changed into integra-

tion, according to:
∑
k →

S
(2π)2

∫
d2k. Then, Dirac delta is transformed, δ(Ek − Ek′) =

2mδ(k2 − k′2)/~2. Finally, introducing the new constant C = mS/π~3 one obtains

P(k′↓,Φ↑)→(k↑,Φ↓) = C

∫
d2k

∣∣∣V (k2 + k′2, (k + k′)
2
)∣∣∣2 δ (k2 − k′2

)
. (3.17)
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3.2. Interaction between free and localized hole states

It is convenient to introduce polar coordinates such that the x axis is determined by

k′ = k′(1, 0, 0) and k̃ = k′(cosφ, sinφ, 0) is any wave vector with the same length as

k′ (due to the Dirac delta only vectors of the same length will give contribution to the

integral). Then,

(k + k′)2 = 4k′
2

cos2 φ

2
,

and Eq. (3.17) can be written as

P(k′↓,Φ↑)→(k↑,Φ↓) = C

∫ 2π

0

dφ

∫ ∞
0

kdk

∣∣∣∣V (φ2 , k′2
)∣∣∣∣2 δ (k2 − k′2

)
.

Finally, changing the integration variable, x = k2, and indicating the only explicit depen-

dence of transition probability on the length of the initial wave vector, P(k′↓,Φ↑)→(k↑,Φ↓) = P
(
k′2
)

, one arrives at the expression

P
(
k′

2
)

=
C

2

∫ 2π

0

dφ

∣∣∣∣V (φ2 , k′2
)∣∣∣∣2 . (3.18)

In order to obtain total transition probability P one has to sum the transition prob-

ability P (k′2) over all the initial states with the factor f(k′2) · (1− f(k′2)) [where f(k′2)

is the Fermi-Dirac distribution function given by Eq. (3.2)] to make sure that the initial

state is occupied and the final state is empty. The summation is, as usual, changed into

integration in polar coordinates (due to isotropy, the angular integral gives only 2π) and

the integration variable x = k2 is introduced. Then, the expression for the total transition

probability is given by

P =
S

4π

∫ ∞
0

dxP (x)f(x) (1− f(x)) , (3.19)

and Eqs. (3.18), (3.16), (3.14), (3.15), in terms of new variables x and φ, are given by

P (x) =
mS

2π~3

∫ 2π

0

dφ

∣∣∣∣V (φ2 , x
)∣∣∣∣2 , (3.20)

V

(
φ

2
, k′

2

)
=

e2σ2

2π2εε0S
e−σ

2x

(
J1

2
− J2√

π

)
, (3.21)

J1 =
π

3
2

2
√
σ2 − σ2

z

2

exp

 σ4x cos2 φ
2

2
(
σ2 − σ2

z

2

)
 I0

 σ4x cos2 φ
2

2
(
σ2 − σ2

z

2

)
 , (3.22)

J2 =

√
πσz√
2

∫ 1

0

dw
1

σ2 − σ2
z

2
+ σ2

z

2
w2

exp

 σ4x cos2 φ
2(

σ2 − σ2
z

2
+ σ2

z

2
w2
)
 . (3.23)

The resulting dephasing rates are presented and discussed in Sec. 4.3.
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Chapter 4

Results

In this chapter, all the results of the developed theoretical models are presented and com-

pared with the experimental measurements (provided by the Regensburg group). First,

the solutions for the spin dynamics for various experimental conditions and the resulting

TRKR signals are given. Then, the modeled RSA signals, also for different excitation

conditions and magnetic field configurations, are presented. In both cases, fittings to the

experimental data are also shown and the parameters of spin dynamics are extracted. Fi-

nally, the results concerning the microscopic model of decoherence, i.e. the temperature

dependencies of the hole spin lifetimes, are presented. Results concerning the TRKR and

RSA experiments, apart from the ones performed in tilted fields, have been published in

Ref. [15].

4.1 TRKR experiment

In general, to calculate the TRKR signal one has to solve the set of differential equations

2.23-2.25 (in this work this was done by the use of Laplace transform technique) and,

using obtained solutions for Σh and Σt [the former being given by Eq. (2.22)], find the

TRKR response as given by Eq. (2.43). The initial values of the dynamical variables

given by the vector S2 are responsible for different excitation conditions (through their

dependence on pump pulse and fast decoherence) and can be explicetely written as:

Σh(0) = e−u
(
(1− 2|F (∆)|2)p cosφ− 2|F (∆)|2 − p cosφ

)
+ p cosφ, (4.1)

Xh(0) = e−u/2−w
(
(1− 2|F (∆)|2)p sinφ− p sinφ

)
+ p sinφ, (4.2)

Yh(0) = e−u/2−w2M(∆)p sinφ, (4.3)

Σt(0) = 2|F (∆)|2p cosφ+ 2|F (∆)|2, (4.4)

Nt(0) = Σt(0). (4.5)
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4.1. TRKR experiment

The general solution, for arbitrary magnetic field, is a rather complicated expression.

Therefore, to get the formulas with clear physical interpretation, three special cases were

considered.

No magnetic field

In the case of no magnetic field, i.e. for ωh = ωt = 0, the equations of motion for the

dynamical variables are significantly simplified and the expressions for the trion and hole

polarizations (note that without the magnetic field equilibrium hole spin polarization

vanishes) are given by

Σt(t) = Σ̃t(t) = Σt(0)e−γ1t,

Σh(t) = Σ̃h(t) = e−κtΣh(0) + η (e−κt − e−γ1t) Σt(0),

where κ = κx + κx0 and η = γ1/(γ1 − κ). The initial values are also simplified,

Σt(0) = 2|F (∆)|2,

Σh(0) = −e−u2|F (∆)|2 = −e−uΣt(0).

Using Eq. (2.43), the TRKR signal is

TRKR = Σt(0)
(
e−γ1t(η + 1)− e−κt(η − e−u)

)
. (4.6)

The physical interpretation of this formula is as follows. Under resonant excitation (i.e.

∆ = 0, u = 0) and in the absence of a magnetic field, optically oriented electron and hole

spins retain their orientation during the photocarrier lifetime. During recombination of

electrons and holes with matching spins (according to the optical selection rules), the spin

polarization is completely removed from the sample. Therefore, the TRKR signal nearly-

monoexponentialy decays from the initial value (equal to 4|F (0)|2) to zero on the timescale

of the trion lifetime, as no hole spin polarization is transferred to the resident holes.

However, under nonresonant excitation, the hole spin polarization is rapidly (modeled as

instantaneously) shrinked by the factor e−u (the probable mechanism behind this effect

was described in sec. 2.3), in contrast to the electron spins, which retain their orientation.

Then, during recombination, spin-polarized electrons remove holes with matching spin

from the partly depolarized hole system, leaving an excess of holes oriented opposite to

the optically created hole spin orientation (therefore, this orientation will be refered to

as negative). This results in the increase of time during which the spin polarization is

observed, as it is no longer limited by the trion lifetime but rather by the hole SDT.

The schematic picture of the mechanism described here (which will be reffered to as

decoherence-induced mechanism) is presented in Fig. 4.1.
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4.1. TRKR experiment

Figure 4.1: Schematic picture representing decoherence-assisted initialization of resident

hole spin polarization (long-living hole spin polarization). Distribution of hole (trion) spin

orientation is presented on the circles, with blue (red) color corresponding to hole (trion)

spins (darker colors correspond to bigger values, white means 0).

Two kinds of TRKR measurements at zero magnetic field were performed by the

Regensburg group. First, the Kerr response for non-resonant excitation conditions was

investigated (see Fig. 4.2), where the excitation wavelength was tuned from near-resonant

(λ = 743 nm) to 7 meV off-resonance (739.8 nm). Then, the power-dependent series of

measurements were performed, with power varying up to three orders of magnitude (see

Fig. 4.3). In the first case, the temperature was set to T = 15 K, in the second to

T = 10 K. Experimental traces for both measurements are well reproduced by Eq. (4.6)

[red, solid lines in Figs. 4.2 and 4.3 correspond to the fits according to Eq. (4.6)] in the

whole time range, except for the first few picoseconds after excitation, in which the rapid

initial dephasing of the holes occurs that is not modeled in a time-resolved manner in the

theory. Using the least-squares fit algorithm, all the parameters were extracted: the ratio

of the hole and trion spin polarizations after the initial dephasing, Σh(0)/Σt(0) = −e−u,
trion recombination rate γ1 and the hole decoherence rate κ (see Figs. 4.2 and 4.3 for the

results). As the values of γ1 and κ remain nearly constant throughout the investigated

detuning and power range, the photocarrier and hole spin dynamics are not strongly

influenced by the fast initial decoherence.
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Figure 4.2: Experimental (black dots) and modeled (red line) Kerr signal in the absence

of magnetic field for different excitation wavelengths (right), along with the evolution

parameters extracted from the fitting procedure: hole-to-trion spin polarization after fast

decoherence, Σh(0)/Σt(0) = −e−u (top left) and decay rates κ, γ1 (bottom left, blue and

red dots, respectively). Experimental data source: Ref. [15].

Voigt configuration

For magnetic fields applied in the sample plane (Voigt configuration, φ = π/2, θ = π/2),

another useful approximation, which allows for great simplification of the formulas, is

made. Namely, taking into account that the focus of the investigation is on the long

hole SDT regime, the hole decoherence rates are assumed to be smaller than precession

frequencies ωt, ωh (which means that spins live at least for few precession periods) and

radiative decay rate γ1. However, for very small precession frequencies (in the case of

weak magnetic field), this approximation is not valid. Still, it is plausible for most cases

of TRKR experiments, due to relatively strong magnetic fields applied. In the case of a

RSA experiment (where magnetic field varies from 0 to some fixed value), which will be

discussed later, this assumption is not valid and will not be used. With the use of this

approximation, the expressions for the trion and hole polarizations are

Σt(t) = Σt(0)e−γ1t cosωtt, (4.7)

Σ̃h(t) = Ae−(γ1+iωt)t +Be−(κ+iωh)t + c.c., (4.8)
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Figure 4.3: Experimental (black dots) and modeled (red line) Kerr signal in the absence of

magnetic field for different excitation powers (right), along with the evolution parameters

extracted from the fitting procedure: hole-to-trion spin polarization after fast decoherence,

Σh(0)/Σt(0) = −e−u (top left) and decay rates κ, γ1 (bottom left, blue and red dots,

respectively). Experimental data source: Ref. [15].

where κ = κx0 + (κx + κz)/2 and the prefactors are:

A = −1

2

γ1(γ1 + iωt)

ω2
h + (γ1 + iωt)2

Σt(0), (4.9)

B =
1

2

γ1(γ1 − iωh)

ω2
t + (γ1 − iωh)2

Σt(0) +
1

2
Σ̃h(0) +

i

2
Yh(0). (4.10)

The corresponding TRKR signal is

TRKR =

(
Σt(0)

2
− A

)
e−(γ1+iωt)t −Be−(κ+iωh)t + c.c. (4.11)

The physical interpretation of this formula will now be discussed. First of all, as can

be seen from Eq. (4.8), the hole polarization is composed of two components. The first

one (with coefficient A and its complex conjugate), which will be denoted by Σ
(short)
h (t),

depends on the parameters of the trion dynamics (ωt and γ1) and originates from the

following mechanism. Trions recombine with holes with matching spins during precession

at different times. Therefore, during recombination, hole spins of different orientations
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Figure 4.4: Schematic picture representing precession-induced initialization of resident

hole spin polarization (long-living hole spin polarization). Distribution of hole (trion)

spin orientation is presented on the circles, with blue (red) color corresponding to hole

(trion) spins (darker colors correspond to bigger values, white means 0).

are removed, not only the optically oriented ones (which, of course, affects the hole spin

polarization the same way as the trion spin polarization: with frequency ωt and decay rate

γ1). In Fig. 4.4, a schematic picture of this mechanism is shown for the idealized situation

with ωt →∞, for which the removed holes are evenly distributed over all spin orientations.

In a realistic case, holes with different spin orientations will be removed with different

rates and the obtained hole polarization should, in general, depend on both the frequencies

and the recombination rate, which is reflected by Eq. (4.9). The second component of

the hole spin polarization (with coefficient B and its complex conjugate), which will be

denoted by Σ
(long)
h (t), describes the long-living evolution (with decay rate κ and precession

frequency ωh) of the spin polarization, that is not removed during recombination. Both

hole spin polarization components, along with the trion spin polarization, form the TRKR

signal that can also be divided into 2 parts: short-living, precessing with the trion Larmor

frequency, and long-living, precessing with the hole Larmor frequency [Eq. (4.11)]. An

exemplary TRKR signal for resonant pumping, divided into its components, is shown in

Fig. 4.5.

As the short-living part is not of great interest, we will now focus on the Σ
(long)
h

component. There are two sources of the long-living spin polarization: precession-induced

mechanism, described in this subsection, and decoherence-induced mechanism, described
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Figure 4.5: Simulated TRKR signal (black, solid lines) on the short (left) and long (right)

time scales for resonant pumping (no fast decoherence, u = w = 0). Additionaly, on the

short time scale, signal components are drawn: long-living hole spin polarization Σ
(long)
h

(blue, solid line), short-living hole spin polarization Σ
(short)
h (blue, dashed line) and trion

spin polarization Σt (red, solid line). Parameters used for modelling: γ1 = 0.1 ns−1,

κ = 10 ns−1, hole in-plane g-factor g⊥ = 0.055, trion (electron) g-factor gt = 0.266 and

magnetic field B = 1 T.

in the last subsection. As can easily be seen, by comparing Figs. 4.4 and 4.1, the two

mechanisms produce hole spin polarization of opposite signs: the first one is parallel to

the optical orientation, the second one is antiparallel. Therefore, combining these two

mechansims allows one to control the phase of the long-living part of polarization, Σ
(long)
h ,

at a given time. To show this, Σ
(long)
h is written in the form

Σ
(long)
h (t) = e−κt

[
(a− e−u) cos(ωht) + b sin(ωht)

]
Σt(0), (4.12)

where
a = <

(
γ1(γ1−iωh)

ω2
t +(γ1−iωh)2

)
, 0 < a < 1,

b = =
(

γ1(γ1−iωh)

ω2
t +(γ1−iωh)2

)
, 0 < b < 1,

and the relation Σh(0) = −e−uΣt(0) [Eq. (4.1)] was used, together with putting Yh(0) to

0, as it is negligibly small, both due to dependence on p and M(∆). Now, the Eq. (4.12),

can be rewritten in the form

Σ
(long)
h (t) =

a− e−u

cosα
cos(ωht+ α)e−κtΣt(0), (4.13)

where

α = arctan

(
b

e−u − a

)
. (4.14)
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Figure 4.6: Simulated long-living hole spin polarization components of TRKR signals for

different fast decoherence parameters u. The phase of the signal is moving from α0 for

u = 0, i.e. no detuning (black line), through α = π/2 for u = − ln a and further (red

line corresponds to biggest u). Parameters used in the modelling: γ1 = 0.1 ns−1, κ = 100

ns−1, hole in-plane g-factor g⊥ = 0.055, trion (electron) g-factor gt = 0.266 and magnetic

field B = 0.1 T.

By changing the fast decoherence parameter u from 0 to infinity one can control the phase

shift α. The discontinuity of the arctan function (when going through a = e−u) is exactly

cancelled by the sign change of the factor in front of the expression 4.13. One therefore

obtains:

Σ
(long)
h (t) = −|a− e

−u|
cosα

cos(ωht+ α)e−κtΣt(0),

with α varying from α0 = arctan(b/(1 − a)) (for u = 0), through π/2 (for a = exp(−u))

to α∞ = π/2 + arctan(b/a). Fig. 4.6 shows the effect of phase shift for different fast

decoherence parameters u. To control α one can of course also change a or b, which

effectively means changing the magnetic field (which affects Larmor frequencies ωt and

ωh, that a and b depend on). However, this would also change the frequency of oscillations

and the effect of phase shift would not be clearly seen in the TRKR signal. Nevertheless,

if one is interested in the phase of the signal at time t = 0, which is the case in the RSA

experiment, then it is possible to change α controlling both u and B. This control and

its effect will be discussed in details in the subsection concerning the RSA signal.

Tilted magnetic field

Here, the same approximation as in the previous subsection is used, i.e., the hole decoher-

ence rates are assumed to be smaller than the other dynamical parameters of the system.
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Then, the solutions for trion and hole spin polarizations are given by

Σt(t) =Σtt(0)e−γ1t
(
cos2 θ + sin2 θ cosωtt

)
(4.15)

Σ̃h(t) =A1e
−γ1t + A2e

−(γ1+iωt)t +B1e
−(κ1⊥ sin2 φ+κ1‖ cos2 φ)t

+B2e
−(κ2⊥ sin2 φ+κ2‖ cos2 φ+iωh)t + c.c., (4.16)

where the coefficients are

A1 = −1

2

ω2
h cos2 φ+ γ2

1

ω2
h + γ2

1

cos2 θΣt(0), (4.17)

A2 = −1

2

γ1

γ1 + iωt

ω2
h cos2 φ+ (γ1 + iωt)

2

ω2
h + (γ1 + iωt)2

sin2 θΣt(0), (4.18)

B1 =
1

2

ω2
t cos2 θ + γ2

1

ω2
t + γ2

1

cos2 φΣt(0) +
1

2
cos2 φΣ̃h(0) +

1

4
sin 2φX̃h(0), (4.19)

B2 =
1

2

γ1

γ1 − iωh

ω2
t cos2 θ + (γ1 − iωh)2

ω2
t + (γ1 − iωh)2

sin2 φΣt(0) +
1

2
sin2 φΣ̃h(0)

−1

4
sin 2φX̃h(0) +

i

2
sinφYh(0), (4.20)

and the new dephasing rates are defined as

κ1⊥ = κx + κz,

κ1‖ = 2κx,

κ2⊥ =
κx + κz

2
+ κx0,

κ2‖ = κx + κz0.

The corresponding expression for the TRKR signal is given by

TRKR =

[
Σtt(0)

2

(
cos2 θ + sin2 θ cosωtt

)
− A1

]
e−γ1t + A2e

−(γ1+iωt)t

+B1e
−(κ1⊥ sin2 φ+κ1‖ cos2 φ)t +B2e

−(κ2⊥ sin2 φ+κ2‖ cos2 φ+iωh)t + c.c. (4.21)

The physical interpretation of Eq. (4.21) will now be given. First of all, since in a

tilted magnetic field, the quantization axis for holes (trions) forms the angle φ (θ) with the

structure axis a non-zero component of the optically oriented hole (trion) spin polarization

along the quantization axis exists. Therefore, the spin polarization should split into two

parts: non-precessing along the quantization axis (which coincides with magnetic field

axis for electrons but, due to anisotropic hole g-factor, does not for holes) and precessing,

perpendicular to this axis. This is reflected in the equations: the precessing parts of both

trion and hole polarizations (coefficients A2 andB2) are proportional to cos2 θ or cos2 φ and

the non-precessing components (coefficients A1 and B1) are proportional to sin2 θ or sin2 φ.

Secondly, the same decomposition of the hole spin polarization and of the whole TRKR
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4.1. TRKR experiment

signal as for the Voigt configuration can be made. Namely, short-living component Σ
(short)
h

(corresponding coefficients: A1 and A2) and long-living component Σ
(long)
h (corresponding

coefficients: B1 and B2) exist, due to the same mechanism as described in the previous

section. Finally, the the new dephasing rates can be connected with the spin relaxation

time T1 and the spin dephasing time T2 in the following way:

T1(φ) =

(
κ1⊥ + κ1‖

2
+
κ1‖ − κ1⊥

2
cos 2φ

)−1

, (4.22)

T2(φ) =

(
κ2⊥ + κ2‖

2
+
κ2‖ − κ2⊥

2
cos 2φ

)−1

. (4.23)

Due to the anisotropy of the hole g-factor, the tilting of magnetic field increases

Zeeman frequncy for holes, ωh. This results in the change of the dephasing parameters,

since they depend on the spectral densities of the reservoir at the frequency ωh [see Eq.

(2.26)]. Therefore, the TRKR measurements in tilted magnetic fields were performed by

the Regensburg group in the following way. Simultaneously with the increase of magnetic

field tilt angle, its magnitude was decreased, in order to keep the hole precession frequency

ωh constant. In this way, the dephasing rates were kept constant, which allowed us to

use the same fitting parameters for different tilt angles. Three series of experimental

measurements in tilted magnetic fields were performed, for three different hole precession

frequencies. These corresponded to three values of the in-plane (zero tilt angle) magnetic

field 2 T, 3.5 T, 5 T and precession periods (τ = 2π/ωh) τ1 ∼ 500 ps, τ2 ∼ 300 ps and

τ3 ∼ 200 ps, respectively. In each series, the tilt angle was changed from 0o (θ = φ = π/2)

to 85o and the temperature was set to 1.2 K.

The fitting procedure consisted of three steps. First, the fitting algorithm for the zero

tilt angle (θ = φ = π/2) was applied because in the Voigt geometry the dependences

on g‖, κ1⊥, κ1‖ and κ2‖ vanish. From this fitting, g⊥ and κ2⊥ were extracted and used

in the subsequent fittings as constant parameters. Next, three tilt angles were chosen

and a simultaneous fit to all three curves was made, in order to obtain g‖, κ1⊥, κ1‖ and

κ2‖. In all fittings, κ1⊥ was found to be at least 3 orders of magnitude smaller than

other decoherence rates, so it was set to 0 (in order to decrease the number of fitting

parameters and increase the precision of the fitting). Finally, all the parameters were

set constant and the remaining curves were fitted, with some freedom left for the angle,

i.e. the angle was allowed to differ by maximum 0.15o (this is justified by the fact that

experimental setting of, e.g., 87o may have actually been 87.1o or 86.9o). At the end,

sums of the squares of differences between measured and modeld signals were calculated

and compared (for different triples of chosen tilt angles) to find the best fitting. Due to

the similiar effect of inhomogeneous broadening and intrinisic decoherence on the TRKR

signal (gaussian and exponential decay of the signal, respectively), the fitting procedure
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Figure 4.7: Effective spin relaxation and dephasing times, T1 and T ∗2 , as a function of the

tilt angle for different hole precession periods: τ1 (black), τ2 (red) and τ3 (blue).

could not distinguish between the two mechanims on such a short time scale (all the decay

effects were attributed to the intrinisic decoherence, leaving the spread of hole g-factors

equal to 0). Therefore, the inhomogenous broadening of the g-factors was not included

during modelling and the effective T1 and T ∗2 times were extracted, instead of T1 and T2.

The experimental traces and the corresponding fitted curves, for all three series of

measurements, are shown in Fig. 4.8. Extracted parameters of the evolution are collected

in the table 4.1 and the tilt angle dependencies of the effective spin relaxation and de-

phasing times, T1 and T ∗2 , for the three measured cases, are presented in Fig. 4.7. Note

that T ∗2 depends on both intrinisic time T2 and the inhomogeneity of the hole g-factor,

which can be different for the in-plane and out-of plane components. The most reliable

results are the in-plane component of the hole g-factor, g⊥, and the dephasing rate κ2⊥,

as for the Voigt geometry the fitting procedure is the least complex. As can be seen

from table 4.1, with the increasing magnitude of the magnetic field (decreasing τ) κ2⊥

increases, which is an expected behaviour due to the inhomogeneous broadening of the

hole g-factors. Concerning the rest of the parameters, the ones extracted for τ = 300 ps

series seem to be unreliable. First of all, there is a big discrepancy between the out-of-

plane component of the hole g-factor extracted for this series and the other two. Secondly,

enormously large value of κ1‖ suggests that the fitting procedure completely omitted the

strictly decaying part of the TRKR signal (for such a big value, the decaying part goes

to 0 very quickly). Therefore, for parameters κ1‖, κ2‖ and g‖ only the results for τ = 200

ps and τ = 500 ps series may be considered as reliable. The value of the out-of-plane

component of the hole g-factor was found to be over 12 times larger that the value of the

in-plane component. Spin relaxation time T1 was found to decrease with the increasing

magnitude of the magnetic field (as κ1‖ increased), while κ2‖ seems to slightly decrease.
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Figure 4.8: Experimental (black dots) and modeled (red lines) Kerr signals in tilted

magnetic fields for different precession periods: (a) τ ∼ 500 ps, (b) τ ∼ 300 ps and (c)

τ ∼ 200 ps. Experimental data source: unpublished data by the courtesy of Tobias Korn

and Michael Kugler.

Table 4.1: Fitted parameters for the three different hole precession periods τ .

Precession κ1‖ κ2‖ g‖ κ1⊥ κ2⊥ g⊥

period τ (ps) (ns−1) (ns−1) (ns−1) (ns−1)

500 0.783 4.52 0.881 0 0.343 0.070

300 1110 2.02 0.960 0 0.765 0.069

200 9.01 3.76 0.883 0 1.08 0.072
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4.2 RSA experiment

In order to obtain the expression for the RSA signal the stationary point of the three-

step transformation, given by Eq. (2.28), has to be found for different magnetic fields.

The general solution is even more complicated than the general solution for the TRKR

signal, therefore two separate cases will be considered: RSA dependence on excitation

conditions for fixed Voigt geometry (for which complete, analytical solution will be given)

and RSA dependence on tilt angle of magnetic field (where only preliminary results will

be presented). During calculations, the following approximations were made. First, the

assumption of low-power pumping is maintained, so the field dependence only up to the

second order is kept [there is no use of keeping higher-order corrections since some of

them were already neglected, see Eq. (2.10)]. Secondly, since the RSA experiments

are performed in the long SDT regime, it is assumed that all hole spin decoherence

rates (all κs) are much smaller then the recombination rate γ1. Note however, that the

approximations from the previous section, κ � ωt and κ � ωh, are not used, since they

are obviously not correct for weak magnetic fields. Moreover, it is assumed that the

intrinsic dephasing rates, κs, are constant in the relevant range of the magnetic field.

This amounts to assuming that the spectral densities of the reservoir coupled to the hole

spins are constant in the corresponding range of frequencies. Finally, because the laser

repetition period tr is of the order of tens of nanoseconds and the photocarrier lifetime

is of the order of hundreds of picoseconds, only long-living part of the spin polarization

is preserved, i.e., all the components with factor the e−γ1tr are put to 0. At the end, as

mentioned in Sec. 2.5, in order to model the response from an inhomogeneous ensemble of

hole spins, the obtained expression for the RSA signal is numerically averaged according

to a Gaussian distribution of hole g-factors with the standard deviation ∆g.

Different excitation conditions in Voigt geometry

In the Voigt geometry, the expression for the RSA signal has the form

∆Σ(RSA) ∼ f
P

Q
, (4.24)

where

f = 1− e−u − ω2
t

γ2
1 + ω2

t

, (4.25)

P = (iω̃ + κ′)eiω̃tr/2 − iω̃e−u/2−w−κtr/2 − (ω̃ → −ω̃), (4.26)

Q = e−uP +
[
(iω̃ − κ′)e−u/2−w+iω̃tr/2 − iω̃eκtr/2 − (ω̃ → −ω̃)

]
, (4.27)

with κ = κx + κz + 2κx0, κ′ = κz − κx, ω̃ = 2
√
ω2

h − κ′2/4, and (ω̃ → −ω̃) representing

additional terms, obtained from the preceding ones by changing the sign of ω̃. In order to
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Figure 4.9: RSA traces obtained from Eq. (4.24) with (bottom) and without (top) fast

hole spin decoherence. Different mechanisms responsible for the sign and value of the

long-living spin polarization and, as a result, the RSA peaks are presented, together with

the regions, where they dominate.

find the physical meaning of the dephasing rates κ, κ′ the analysys of Eqs. (2.23)-(2.25)

for Voigt geometry (φ = θ = π/2) in the limiting cases of ωt = 0 and ωt � κα, κα0 (for

α = x, z) has to be made. In the first case, κα = κα0 and the decoherence time for the

spin polarization along the structure axis is T (0)
z = 1/2κx0, while the decoherence time

for the in-plane components of the spin polarization is T (0)
xy = 1/(κz + κx0). In the second

case, for sufficiently strong fields, the longitudinal (with respect to the field orientation)

spin relaxation time is T1 = 1/(κz + κx) and the transverse relaxation (dephasing) time

is T2 = 2/(κz + κx + 2κx0) = 2/κ.

The physical interpretation of Eq. (4.24) will now be presented. The RSA signal

arises from the interference of spin polarizations created in the sample by subsequent

pump pulses. However, only long-living components of the spin-polarization can survive

in between the pulses. Therefore, the RSA signal is straightforwardly connected with

the long-living hole spin polarization component Σ
(long)
h , as other components vanish.

In the previous sections, two mechanisms of creating Σ
(long)
h in the TRKR signal were

discussed: precession- and decoherence-induced. The same mechanisms are responsible

for the formation of the RSA signal. First, the resonant pumping case, with no fast initial
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decoherence (u = w = 0), will be discussed. For zero magnetic field, the precession-

induced mechanism does not work, so there is no long-living spin polarization in the

system and, therefore, no RSA signal (see Fig. 4.9). Then, with increasing magnetic

field, precession induced mechanism starts working and more and more spin-polarized

holes survive recombination, leading to the increase of the RSA amplitude [of course there

are still minima and maxima, corresponding to destructive and constructive interference,

the structure of which is reflected in Eq. (4.24) by P and Q]. With a further increase

of magnetic field, the RSA amplitude begins to decrease because of the hole ensemble

dephasing due to the g-factor inhomogeneity (see Fig. 4.9).

When the fast hole spin decoherence takes place in the system (due to non-resonant

or high-power pumping) the description changes. Now, for zero magnetic field, when

precession-induced mechanism does not work, decoherence-induced one is present and

creates long-living spin polarization oriented oppositely to the one created by the first

mechanism (see Fig. 4.9). Then, with increasing magnetic field, the precession-induced

mechanism becomes more efficient and competes with decoherence-induced one. At some

point it becomes more efficient and the sign of RSA signal changes. This competition

between the two mechanisms is reflected by the envelope factor f in Eq. (4.24). In the

limiting cases for u = 0 or ωt = 0 it is always negative or positive, respectively. The

competition of these two mechanisms can also be seen by analysing the phase shift of the

TRKR signal [see Eqs. (4.13), (4.14) and Fig. 4.6]. Since every maximum of the RSA

signal comes from the constructive interference of the long-living polarizations created by

subsequent pulses, its value (and particularly the sign) depends on the initial value of

long-living spin polarization component Σ
(long)
h (0). Now, by changing the magnetic field

and fast decoherence parameter, the phase shift α can move the inital values of Σ
(long)
h

from negative values (black, cyan and green lines in Fig. 4.6 and corresponding red regions

in Fig. 4.9) through 0 (blue line in Fig. 4.6 and the corresponding green points in Fig.

4.9) to positive values (pink and red lines in Fig. 4.6 and corresponding blue region in

Fig. 4.9).

Two kinds of RSA experiments in Voigt geometry were performed by the Regensburg

group: for different excitation wavelengths and different pumping powers. Detuning and

power ranges were the same as in the case of Kerr signal measurements in the absence

of magnetic field (up to 7 meV detuning, and power range varying up to three orders of

magnitude). Experiments were performed at a nominal sample temperature of 1.2 K and

the time delay between the pulses was set to 12.5 ns (corresponding to the laser repetition

rate of 80 MHz). Eq. (4.24), after averaging over the Gaussian distribution of the hole

g-factors, allows one to closely model the RSA signal shape and, with the use of least-

square fit algorithm, to extract the values of various physical characteristics of the hole
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spin system. Experimental RSA traces together with the fits and extracted parameters,

for both detuning and power measurement series, are presented in Figs. 4.10 and 4.11,

respectively.
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Figure 4.10: (a) Experimental RSA traces (black points) and best fits (red lines) for

selected values of the detuning. (b)-(e) Parameter values extracted from the fitting: the

dephasing time (b), the fast decoherence parameters (c), the hole g-factor (d), and the

standard deviation of the g-factor distribution in the ensemble (e). Experimental data

source: Ref. [15].
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Figure 4.11: (a) Experimental RSA traces (black points) and best fits (red lines) for

selected values of the excitation density. (b)-(e) Parameter values extracted from the

fitting: the dephasing time (b), the fast decoherence parameters (c), the hole g-factor (d),

and the standard deviation of the g-factor distribution in the ensemble (e). Experimental

data source: Ref. [15].

For the off-resonant case, the value of the transverse spin dephasing time T2 increases

for decreasing detuning and saturates for low detunings at about 100 ns. The ratio of

hole and trion spin polarization after fast initial decoherence, Σh(0)/Σt(0) = − exp(−u),

reaches -1 as the resonance is approached. This shows that the off-resonant excitation at

low temperatures leads only to a small loss of the optical orientation, which disappears
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4.2. RSA experiment

completely at resonance. The dephasing factor w, however, remains finite even at the

resonance. This results from the fact, that spin dephasing is induced by an optical excita-

tion due to selective coupling of the light field to one of the spin states (according to the

selection rules) [19]. Both the hole g-factor and the standard deviation of the ensemble

g-factor distribution tend to increase with the growing detuning. This may be explained

by a reduced absorption of the pump pulse as the detuning is increased, which leads to a

reduction of the sample temperature and a smaller spin-polarized hole ensemble. A shift

of the hole g-factor to larger absolute values with temperature reduction has already been

observed [3] and a smaller ensemble is more susceptible to g-factor inhomogeneity.

In the power series case, similar effects in the RSA traces are observed for increasing

pump power at resonant excitation conditions. Here, the growing fast dephasing is due

to the considerably increased amount of energy pumped into the system, which leads to

an increased density of various excitations. This results in a stronger spin non-conserving

scattering, before photocarrier recombination takes place, as observed in the TRKR mea-

surements. The spin dephasing time T2 also decreases with increasing pumping powers,

most likely due to sample heating. This interpretation is supported by the fact that

the hole g-factor slightly decreases with increasing pumping power, as expected for an

increasing sample temperature.

Resonant excitation in different magnetic field configurations

The analytical formula for the RSA signal in tilted magnetic field is too complex, due to

the dependecies on the angles θ and φ, to find its clear physical interpretation. Moreover,

because of the complicated structure of the expression, it is hard to fit to the experimental

data and extract the dynamical parameters of the system. Therefore, the only thing that

was achieved is the reproduction of the general qualitative behaviour of the RSA signal

shape. As can be seen in Fig. 4.12, for tilted fields, the RSA signal acquires the Gaussian-

like envelope, centred at the zero magnetic field. This experimentally observed behaviour

is reproduced by the model. However, due to lack of clear analytical formula, its origin

has not been explained yet.
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Figure 4.12: Experimental (right) and modeled (left) RSA traces for different angles θ

(tilt angle α = 90o − θ). Zero-field peaks in experimental signals are observed, due to

non-resonant excitation, and are not connected with the tilt angle. Experimental data

source: unpublished data by the courtesy of Tobias Korn and Michael Kugler.

4.3 Microscopic model of decoherence

Results related to the theory discussed in Chapter 3 will now be presented. In order to

find the localized spin lifetime dependence on temperature, first Eq. (3.3) was numerically

solved to find the chemical potential of the system for different temperatures, µ(T ). The

solution was found for the total carrier concentration p = 1.1 · 1011 cm−2 (which is the

experimentally measured concentration in the sample used by the Regensburg group) and

few values of x > 1, i.e. different proportions of the number of trapping centres to the

total number of carriers in the system. During calculations, the energies of localization

centres were assumed to be normally distributed around E0 = −1 meV, with the standard
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4.3. Microscopic model of decoherence

deviation σE = 0.1 meV. Then, with the use of calculated chemical potential, the distri-

bution function for the free holes as a function of temperature, n(T ), was found [see Eq.

(3.4)]. This way, the scattering probabilities between free and localized states could be

calculated for different temperatures. However, in order to obtain numerical values, the

localized state parameters had to be chosen. Using the estimates described in Chapter 3,

the following values of the Gaussian widths of the localized state wavefunction, σ and σz,

were found for 4 nm wide sample, investigated by the Regensburg group:

σz = 1.8nm,

1.8nm < σ = 7.5nm.

As can be seen in Fig. 4.13, the localized spin lifetime τ (inverse of the scattering

probability rate) is almost independent of the in-plane size of the localized state wave-

function in the estimated range of σ. However, as shown in Fig. 4.14, it strongly depends

on the average number of trapping centres per carrier and increases with growing x. The

calculated localized hole spin lifetimes are much smaller than the experimentally observed

ones (∼ 10 ns in 15 K and ∼ 100 ns in 1.2 K). This may be caused by three factors. First,

which is the least probable, is that localization potentials are much deeper than 1 meV.

Secondly, there may be much more localization centres than carriers, i.e. x � 1. It

is, however, also quite unlikely, because, as can be seen in Fig. 4.14, the increase of x

increases the lifetimes mostly at very low temperatures, and already around T = 5 K the

differences in lifetimes for different values of x are very small. Finally, the inconsistency of

the modeled results with experimental data may originate from the oversimplified model.

As mentioned in Chapter 3, two mechanisms, which decrease the spin-flip probability,

were omitted in the proposed approximated model. These are the reduction of the den-

sity of released holes in the vicinity of the localized carrier (induced by the Coulomb

repulsion) and screening of the trapped hole.
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Figure 4.13: Temperature dependence of the calculated localized hole spin lifetime τ

for σ = 3 nm (black circles), σ = 5 nm (red squares) and σ = 7 nm (blue triangles).

Calculations performed for fixed x = 5.
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Figure 4.14: Temperature dependence of the calculated localized hole spin lifetime τ for

x = 1 (black circles), x = 1.5 (red squares), x = 2 (blue triangles) and x = 5 (green Xs).

Calculations performed for fixed σ = 5 nm.
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Appendix: Mathematical formalism

of open quantum systems

This appendix contains basic information about the notation and methods used in the

theory of open quantum systems based on Ref. [20].

Density matrix

The Gleason’s theorem states that if the dimension of Hilbert space H corresponding to

the considered system is greater than 2, then the state of the system can be represented

by linear operator acting on this Hilbert space: ρ ∈ L(H), with the following properties

1. 〈A〉 = Tr(ρA),

2. Tr ρ = 1,

3. ρ = ρ†,

where 〈A〉 is the average value of any observable A connected with the system.

For an open quantum system, i.e. the system (S), which is coupled to environment (E),

the Hilbert space of the whole system is a tensorial product of the system and environment

Hilbert spaces: HS+E = HS ⊗HE. If one is now interested only in the properties of the

system itself, i.e. the observables of the form A ⊗ I, the reduced density matrix can be

introduced,

ρS = TrE(ρ), (A.1)

where ρ = ρS+E denotes the full density matrix of the system and environment and TrE is

the trace over environmental degrees of freedom. Now, using the reduced density matrix,

the average value of the observable A connected only with the system is given by

〈A〉 = Tr(ρSA).
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Evolution of the density matrix

The evolution of the density matrix is given by the Liouville-von Neumann equation,

ρ̇(t) =
1

i~
[H(t), ρ(t)]. (A.2)

Integrating this equation one obtains

ρ(t) =
1

i~

∫ t

t0

dτ [H(τ), ρ(τ)] + ρ(t0). (A.3)

Inserting Eq. (A.3) into Eq. (A.2) one arrives at the formal equation of motion for the

density matrix,

ρ̇(t) =
1

i~

[
H(t), ρ(t0) +

1

i~

∫ t

t0

dτ [H(τ), ρ(τ)]

]
. (A.4)

The next step is to decompose the Hamiltonian of the whole system H (which is

assumed to be independent of time) into the free Hamiltonian part H0 (corresponding to

the evolution of the system S itself) and the interaction part Hint (corresponding to to

the interaction of the system S with the environment E): H = H0 + Hint. Now, for the

time-independent H0, one may use the unitary transformation and transform the density

matrix and interaction part of the Hamiltonian into the interaction picture,

ρ̃(t) = eiH0t/~ρ(t)e−iH0t/~,

H̃int = Hint(t) = eiH0t/~Hinte
−iH0t/~,

where ρ̃(t) and Hint(t) denote the density matrix and interaction part of Hamiltonian

in the interaction picture. Density matrix ρ̃(t) also satisfies the (modified) Liouville-von

Neumann equation,
˙̃ρ(t) =

1

i~
[Hint(t), ρ̃(t)].

Finally, using the already obtained results for the reduced density matrix [Eq. (A.1)]

and the formal equation of motion for the density matrix [Eq. (A.4)], one arrives at the

equation of motion of the reduced density matrix in the interaction picture (which is still

exact),

˙̃ρS(t) = − i
~

TrE[Hint(t), ρ̃(t0)]− 1

~2
TrE

∫ t

t0

dτ [Hint(t), [Hint(τ), ρ̃(τ)]] . (A.5)

Approximations

The first assumption is that there exist two timescales: τenv � τS, where τenv is the

characteristic time of the environment relaxation and τS is the characteristic time of the
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system evolution. Due to the relatively fast relaxation of the environment one can assume

that it is in thermal equilibrium all the time,

ρ̃(t) = ρ̃S(t)⊗ ρ̃E,

with the time independent equilibrium density matrix of the environment given by

ρ̃E = ρE = ρ(eq) =
1

QN

e−βHE ,

with QN and β being the statistical sum and inverse temperature (1/kBT ) respectively.

Of course, in this assumption the assumption of separable state at initial time (no corre-

lations) is included, ρ̃(t0) = ρ̃S(t0)⊗ ρ(eq).

Next, one can show that the first term in Eq. (A.5), i.e. TrE[V (t), ρ̃(t0)], is responsible

only for the rescaling of the energy in the system, so it can be neglected (because it does

not affect the interaction).

Before going further, the interaction term Hint(t) is rewritten in the explicit form of

the product of operators acting on the system and environment,

Hint(t) =
∑
ij

σij(t)⊗Rij(t),

σij(t) = ei(Ei−Ej)t/~|i〉〈j| = e−iωijt|i〉〈j|, (A.6)

Rij(t) = eiHEt/~Rije
−iHEt/~,

where |i〉, |j〉 are the eigenstates of the system Hamiltonian, HS|i〉 = Ei|i〉, and Rij are

corresponding environment operators. Now the equation of motion of the reduced density

matrix in the interaction picture can be written in the form

˙̃ρS(t) = − 1

~2

∑
ijkl

∫ t

t0

dτ [σij(t)σkl(τ)ρ̃S(τ)− σkl(τ)ρ̃S(τ)σij(t)]Rijkl(t− τ) + h.c.

where Rijkl(t− τ) = 〈Rij(t)Rkl(τ)〉 = 〈Rij(t− τ)Rkl〉 are the correlation functions of the

environmental operators, which act as the memory functions with characteristic time τmem

(which means that for arguments much greater than τmem the memory functions vanish).

After changing the integration variable t− τ → s,

˙̃ρS(t) = − 1

~2

∑
ijkl

∫ t−t0

0

ds [σij(t)σkl(t− s)ρ̃S(t− s) (A.7)

−σkl(t− s)ρ̃S(t− s)σij(t)]Rijkl(s) + H.c.,

one more approximation is made. Namely, the assumption is made that the considered

times are much bigger than the memory time: t − t0 � τmem. This results in invalidity

of the equation for the very short timescales (comparable with τmem), but allows one to
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extend the upper limit of integration to infinity, t− t0 →∞, since for big arguments the

memory function vanishes and this extension does not affect the result. Finally, taking

into account that ρ̃S changes slowly during τmem one can put ρ̃S(t− s) = ρ̃S(t). This way

one arrives at the Markovian equation

˙̃ρS(t) = − 1

~2

∑
ijkl

∫ ∞
0

ds [σij(t)σkl(t− s)ρ̃S(t)− σkl(t− s)ρ̃S(t)σij(t)]Rijkl(s) + H.c. (A.8)

Spectral densities

Spectral densities are definied as the Fourier transforms of correlation functions,

Rijkl(ω) =
1

2π~2

∫ ∞
−∞

dseiωsRijkl(s), (A.9)

Rijkl(s) = ~2

∫ ∞
−∞

dωe−iωsRijkl(ω). (A.10)

Spectral densities have the properties

1. Rijkl(−ω) = e−~ω/kBTRklij(ω),

2. Rijkl(ω) = Rklij(−ω),

3. R∗ijkl(ω) = Rlkji(ω).

With the use of spectral densities and system operators σij [definied in Eq. (A.6)] the

Markovian equation of motion for the reduced density matrix in the interaction picture,

Eq. (A.8), can be written in the form

˙̃ρS(t) = −π
∑
ijkl

[
σijσklρ̃S(t)− σklρ̃S(t)σij)e

−i(ωij+ωkl)tRijkl(ωkl)
]

(A.11)

+i
∑
ijkl

P
∫ ∞
−∞

dω

[
σijσklρ̃S(t)− σklρ̃S(t)σij)e

−i(ωij+ωkl)tRijkl(ω)

ω − ωkl

]
+ H.c.

The second part of this equation (together with its hermitian conjugate) has the form

[h, ρ̃S(t)], where h is a hermitian operator. Therefore this part of the evolution equation

is non-dissipative and is responsible for shifting of the energy levels. Because the main

focus is put here on the dissipative influence of the environment on the system dynamics

the non-dissipative part will be neglected.

The remaining first part of Eq. (A.11) (together with its hermitian conjugate) can be

transformed back to the Schrödinger picture in order to obtain the evolution equation of

the form

ρ̇S(t) = − i
~

[H0, ρS(t)] + L[ρS(t)], (A.12)

with the Lindblad superoperator L[ρS(t)], responsible for dissipative dynamics, given by

L[ρS(t)] = −π
∑
ijkl

[(σijσklρS(t)− σklρS(t)σij)Rijkl(ωkl)

+(ρS(t)σijσkl − σklρS(t)σij)Rijkl(−ωij)] . (A.13)
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